Difference between revisions of "2000 AIME II Problems/Problem 15"
m (→See also) |
(solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | + | We apply the identity | |
+ | <cmath>\begin{align*} | ||
+ | \frac{1}{\sin n \sin (n+1)} &= \frac{1}{\sin 1} \cdot \frac{\sin (n+1) \cos n - \sin n \cos (n+1)}{\sin n \sin (n+1)} \\ &= \frac{1}{\sin 1} \cdot \left(\frac{\cos n}{\sin n} - \frac{\cos (n+1)}{\sin (n+1)}\right) \\ &= \frac{1}{\sin 1} \cdot \left(\cot n - \cot (n+1)\right). \end{align*}</cmath> | ||
+ | |||
+ | The motivation for this identity arises from the need to decompose those fractions, possibly into [[telescoping series]]. | ||
+ | |||
+ | Thus our summation becomes | ||
+ | |||
+ | <cmath>\sum_{k=23}^{67} \frac{1}{\sin (2k-1) \sin 2k} = \frac{1}{\sin 1} \left(\cot 45 - \cot 46 + \cot 47 - \cdots + \cot 133 - \cot 134 \right).</cmath> | ||
+ | |||
+ | Since <math>\cot (180 - x) = - \cot x</math>, the summation simply reduces to <math>\frac{1}{\sin 1} \cdot \left( \cot 45 - \cot 90 \right) = \frac{1 - 0}{\sin 1} = \frac{1}{\sin 1^{\circ}}</math>. Therefore, the answer is <math>\boxed{001}</math>. | ||
+ | |||
+ | == See also == | ||
{{AIME box|year=2000|n=II|num-b=14|after=Last Question}} | {{AIME box|year=2000|n=II|num-b=14|after=Last Question}} | ||
+ | |||
+ | [[Category:Intermediate Trigonometry Problems]] |
Revision as of 15:49, 30 August 2008
Problem
Find the least positive integer such that
![$\frac 1{\sin 45^\circ\sin 46^\circ}+\frac 1{\sin 47^\circ\sin 48^\circ}+\cdots+\frac 1{\sin 133^\circ\sin 134^\circ}=\frac 1{\sin n^\circ}.$](http://latex.artofproblemsolving.com/4/c/9/4c9c990a7b70753fe475b450cb0915460af6cf64.png)
Solution
We apply the identity
The motivation for this identity arises from the need to decompose those fractions, possibly into telescoping series.
Thus our summation becomes
Since , the summation simply reduces to
. Therefore, the answer is
.
See also
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |