Difference between revisions of "Lentarot"
m (→HELLO GUYS) |
|||
Line 19: | Line 19: | ||
<math>dz=iae^{i\theta}d\theta</math> | <math>dz=iae^{i\theta}d\theta</math> | ||
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n\int_{0}^{2\pi} (ae^{i\theta})^ | + | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n\int_{0}^{2\pi} (ae^{i\theta})^j iae^{i\theta}d\theta</math> |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{ | + | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{j+1} \int_{0}^{2\pi}e^{i(j+1)\theta}d\theta</math> |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{ | + | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{j+1} [\frac{1}{i(n+1)}e^{i(j+1)\theta}]_{0}^{2\pi}</math> |
− | <math> \int_{0}^{2\pi}e^{i(n+1)\theta}d\theta =\begin{cases}0 & | + | <math> \int_{0}^{2\pi}e^{i(n+1)\theta}d\theta =\begin{cases}0 & j\neq -1\\2\pi i & j=-1\end{cases} </math> |
<math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}2\pi i C_n</math> | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}2\pi i C_n</math> | ||
<cmath>\boxed{\oint_{\gamma}f(z)dz = 2\pi i\sum_{k=1}^{n}res(f(z),\alpha_{k})}</cmath> | <cmath>\boxed{\oint_{\gamma}f(z)dz = 2\pi i\sum_{k=1}^{n}res(f(z),\alpha_{k})}</cmath> | ||
− | |||
− | |||
− | |||
− | |||
==contributions== | ==contributions== | ||
[[2016 AIME I Problems/Problem 10]] Solution 4 | [[2016 AIME I Problems/Problem 10]] Solution 4 |