Difference between revisions of "2008 AMC 12A Problems/Problem 24"
(→Solution: condense + formatting) |
(wik.cat) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Triangle <math>ABC</math> has <math>\angle C = 60^{\circ}</math> and <math>BC = 4</math>. Point <math>D</math> is the midpoint of <math>BC</math>. What is the largest possible value of <math>\tan{\angle BAD}</math>? | + | [[Triangle]] <math>ABC</math> has <math>\angle C = 60^{\circ}</math> and <math>BC = 4</math>. Point <math>D</math> is the [[midpoint]] of <math>BC</math>. What is the largest possible value of <math>\tan{\angle BAD}</math>? |
<math>\textbf{(A)} \ \frac {\sqrt {3}}{6} \qquad \textbf{(B)} \ \frac {\sqrt {3}}{3} \qquad \textbf{(C)} \ \frac {\sqrt {3}}{2\sqrt {2}} \qquad \textbf{(D)} \ \frac {\sqrt {3}}{4\sqrt {2} - 3} \qquad \textbf{(E)}\ 1</math> | <math>\textbf{(A)} \ \frac {\sqrt {3}}{6} \qquad \textbf{(B)} \ \frac {\sqrt {3}}{3} \qquad \textbf{(C)} \ \frac {\sqrt {3}}{2\sqrt {2}} \qquad \textbf{(D)} \ \frac {\sqrt {3}}{4\sqrt {2} - 3} \qquad \textbf{(E)}\ 1</math> | ||
Line 33: | Line 33: | ||
With calculus, taking the [[derivative]] and setting equal to zero will give the maximum value of <math>\tan \theta</math>. Otherwise, we can apply [[AM-GM]]: | With calculus, taking the [[derivative]] and setting equal to zero will give the maximum value of <math>\tan \theta</math>. Otherwise, we can apply [[AM-GM]]: | ||
− | <cmath> | + | <cmath>\begin{align*} |
− | \begin{align*} | ||
\frac{x^2 - 3x + 8}{x} = \left(x + \frac{8}{x}\right) -3 &\geq 2\sqrt{x \cdot \frac 8x} - 3 = 4\sqrt{2} - 3\\ | \frac{x^2 - 3x + 8}{x} = \left(x + \frac{8}{x}\right) -3 &\geq 2\sqrt{x \cdot \frac 8x} - 3 = 4\sqrt{2} - 3\\ | ||
\frac{x}{x^2 - 3x + 8} &\leq \frac{1}{4\sqrt{2}-3}\\ | \frac{x}{x^2 - 3x + 8} &\leq \frac{1}{4\sqrt{2}-3}\\ | ||
− | \frac{x\sqrt{3}}{x^2 - 3x + 8} = \tan \theta &\leq \frac{\sqrt{3}}{4\sqrt{2}-3}</cmath> | + | \frac{x\sqrt{3}}{x^2 - 3x + 8} = \tan \theta &\leq \frac{\sqrt{3}}{4\sqrt{2}-3}\end{align*}</cmath> |
Thus, the minimum is at | Thus, the minimum is at | ||
<math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math>. | <math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math>. | ||
− | ==See | + | ==See also== |
{{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}} | {{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] |
Revision as of 12:19, 24 February 2008
Problem
Triangle has and . Point is the midpoint of . What is the largest possible value of ?
Solution
Let . Then , and since and , we have
With calculus, taking the derivative and setting equal to zero will give the maximum value of . Otherwise, we can apply AM-GM:
Thus, the minimum is at .
See also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |