Difference between revisions of "2024 AMC 10A Problems/Problem 23"

(Solution 1)
(Solution 1)
Line 13: Line 13:
  
 
==Solution 1==
 
==Solution 1==
Subtracting the first two equations yields <math>(a-c)(b-1)=13</math>. Notice that both factors are integers, so <math>b-1</math> could equal one of <math>13,1,-1,-13</math> and <math>b=14,2,0,-12</math>. We consider eacfdusituiosucioufoucio fndsaharucjifire all oif yiurhe[oifdusifh suigafhfiuaicjkgjnturh case separately:
+
Subtracting the first two equations yields <math>(a-c)(b-1)=13</math>. Notice that both factors are integers, so <math>b-1</math> could equal one of <math>13,1,-1,-13</math> and <math>b=14,2,0,-12</math>. We consider each case separately:
 
3
 
3
 
For <math>b=0</math>, from the second equation, we see that <math>a=87</math>. Then <math>87c=60</math>, which is not possible as <math>c</math> is an integer, so this case is invalid.
 
For <math>b=0</math>, from the second equation, we see that <math>a=87</math>. Then <math>87c=60</math>, which is not possible as <math>c</math> is an integer, so this case is invalid.

Revision as of 14:29, 1 December 2024

The following problem is from both the 2024 AMC 10A #23 and 2024 AMC 12A #17, so both problems redirect to this page.

Problem

Integers $a$, $b$, and $c$ satisfy $ab + c = 100$, $bc + a = 87$, and $ca + b = 60$. What is $ab + bc + ca$?

$\textbf{(A) }212 \qquad \textbf{(B) }247 \qquad \textbf{(C) }258 \qquad \textbf{(D) }276 \qquad \textbf{(E) }284 \qquad$

Solution 1

Subtracting the first two equations yields $(a-c)(b-1)=13$. Notice that both factors are integers, so $b-1$ could equal one of $13,1,-1,-13$ and $b=14,2,0,-12$. We consider each case separately: 3 For $b=0$, from the second equation, we see that $a=87$. Then $87c=60$, which is not possible as $c$ is an integer, so this case is invalid.

For $b=2$, we have $2c+a=87$ and $ca=52$, which by experimentation on the factors of $58$ has no solution, so this is also invalid.

For $b=14$, we have $14c+a=87$ 333333and $ca=46$, which by experimentation on the factors of $46$ has no solution, so this is also invalid.

Thus, we must have $b=-12$, so $a=12c+87$ and $ca=72$. Thus $c(12c+87)=72$, so $c(4c+29)=24$. We can simply trial and error this to find that $c=-8$ so then $a=-9$. The answer is then $(-9)(-12)+(-12)(-8)+(-8)(-9)=108+96+72=\boxed{\textbf{(D) }276}$.

~eevee9406

minor edits anithium

Solution 2

Adding up first two equations: \[(a+c)(b+1)=187\] \[b+1=\pm 11,\pm 17\] \[b=-12,10,-18,16\]

Subtracting equation 1 from equation 2: \[(a-c)(b-1)=13\] \[b-1=\pm 1,\pm 13\] \[b=0,2,-12,14\]

\[\Rightarrow b=-12\]

Which implies that $a+c=-17$ from $(a+c)(b+1)=187$

Giving us that $a+b+c=-29$

Therefore, $ab+bc+ac=100+87+60-(a+b+c)=\boxed{\text{(D) }276}$

~lptoggled

Solution 3 (Guess and check)

The idea is that you could guess values for $c$, since then $a$ and $b$ are factors of $100 - c$. The important thing to realize is that $a$, $b$, and $c$ are all negative. Then, this can be solved in a few minutes, giving the solution $(-9, -12, -8)$, which gives the answer $\boxed{\textbf{(D)} 276}$ ~andliu766


Solution 4

\begin{align} ab + c &= 100 \\ bc + a &= 87 \\ ca + b &= 60 \end{align}

\[(1) + (2) \implies  ab + c +bc + a = (a+c)(b+1)=187\implies b+1=\pm 11,\pm 17\]

\[(1) - (2) \implies ab + c - bc - a = (a-c)(b-1)=13\implies b-1=\pm 1,\pm 13\]

Note that $(b+1)-(b-1)=2$, and the only possible pair of results that yields this is $b-1=-13$ and $b+1=-11$, so $a+c=-17$.

Therefore,

\[ab+ba+ac=ab + c +bc + a + ca + b -(a+b+c) = (1)+(2)+(3) - (a+b+c) = 100+87+60-(a+b+c)=\boxed{\textbf{(D) }276}.\] ~luckuso, yuvag, Technodoggo (LaTeX credits to the latter two and editing to the latter)

Solution 5

\begin{align} ab + c &= 100 \\ bc + a &= 87 \\ ca + b &= 60 \end{align}

\begin{align*} (1) - (2) \implies ab + c -bc - a &=(a-c)(b-1)=13 \\ (2) - (3) \implies bc + a -ca - b &=(b-a)(c-1)=27 \\ (3) - (1) \implies ca + b -ab - c &=(c-b)(a-1)=-40 \end{align*}

There are $3$ ordered pairs of $(a,b,c)$: $(5,14,4)$, $(-3,-12,-3)$, $(-9,-12,-8)$.

However, only the last ordered pair meets all three equations.

Therefore, $ab+ba+ac= -9*-12+-12*-8+-8*-9 = \boxed{\textbf{(D) }276}.$

~luckuso, megaboy6679 (formatting), Technodoggo (LaTeX optimization/clarity adjustments)

Solution 6 (Elimination)

Before we start, keep in mind that the problem is asking for the sum \(ab+bc+ac\). This is nothing but \(100+87+60-a-b-c\), or \(247-(a+b+c\)).

To solve the problem, we systematically test the options using elimination:

Let's first check options A and B, since they only happen when a,b, and c sum to 35 or 0. We begin by testing three positive values, but none satisfy the equation when there is a plus sign. For example, \( (12, 8, 4) \) satisfies \( ab + c = 100 \), but does not satisfy \( bc + a = 87\), or \( ac + b = 60\). If \(a+b+c=0\), then not all of the numbers can be positive or negative, so this would not work. From this observation, we conclude that the answer cannot be \( \textbf{A} \) or \( \textbf{B} \).

Now let's test the next option, option C. Option \( \textbf{C} \) states \( ab + bc + ca = 258 \). If true, then:

\(a + b + c = -11\)

This sum is too large. Furthermore, if all three numbers are negative, the solution still fails. For example, testing \( (-4, -5, -2) \) confirms the equation is not satisfied, as we get results that are too small. Thus, we eliminate option \( \textbf{C} \).

Finally, let's test the last two options: D and E. For option \( \textbf{E} \), the sum \( a + b + c \) would be:

\(247 - 284 = -37\)

Testing values such as \( (-11, -12, -14) \), the resulting sums \( ab + c \), \( bc + a \), and \( ac + b \) are far too large to satisfy the equation. Therefore, \( \textbf{E} \) is also eliminated.

Once we have this answer, we still need to verify it by testing out numbers: Finally, we test option \( \textbf{D} \). Using \( ab + bc + ca = 276 \), we get that \(a+b+c = -29\). Also note that a, b, and c all have to be different, because the sums from the three equations are all different. We want to get the three closest values of a, b, and c such that they are all different, and the sum \(a+b+c = -29\). The values \( (-9, -12, -8) \) are the closest three numbers. When we try them, they satisfy all three equations. So, the correct answer is: $ab+ba+ac= -9*-12+-12*-8+-8*-9 = \boxed{\textbf{(D) }276}.$

~pimathmonkey

Video Solution by Power Solve

https://www.youtube.com/watch?v=LNYzBhf3Ke0

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=6SQ74nt3ynw

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png