Difference between revisions of "2016 AIME II Problems/Problem 14"

(Added a partially finished coordbash solution.)
m
Line 155: Line 155:
  
 
(If someone feels like it, please feel free to fill in the rest of the details!)
 
(If someone feels like it, please feel free to fill in the rest of the details!)
 +
 
~ninjaforce
 
~ninjaforce
  

Revision as of 18:38, 25 November 2024

Problem

Equilateral $\triangle ABC$ has side length $600$. Points $P$ and $Q$ lie outside the plane of $\triangle ABC$ and are on opposite sides of the plane. Furthermore, $PA=PB=PC$, and $QA=QB=QC$, and the planes of $\triangle PAB$ and $\triangle QAB$ form a $120^{\circ}$ dihedral angle (the angle between the two planes). There is a point $O$ whose distance from each of $A,B,C,P,$ and $Q$ is $d$. Find $d$.

Solution 1

The inradius of $\triangle ABC$ is $100\sqrt 3$ and the circumradius is $200 \sqrt 3$. Now, consider the line perpendicular to plane $ABC$ through the circumcenter of $\triangle ABC$. Note that $P,Q,O$ must lie on that line to be equidistant from each of the triangle's vertices. Also, note that since $P, Q, O$ are collinear, and $OP=OQ$, we must have $O$ is the midpoint of $PQ$. Now, Let $K$ be the circumcenter of $\triangle ABC$, and $L$ be the foot of the altitude from $A$ to $BC$. We must have $\tan(\angle KLP+ \angle QLK)= \tan(120^{\circ})$. Setting $KP=x$ and $KQ=y$, assuming WLOG $x>y$, we must have $\tan(120^{\circ})=-\sqrt{3}=\dfrac{\dfrac{x+y}{100 \sqrt{3}}}{\dfrac{30000-xy}{30000}}$. Therefore, we must have $100(x+y)=xy-30000$. Also, we must have $\left(\dfrac{x+y}{2}\right)^{2}=\left(\dfrac{x-y}{2}\right)^{2}+120000$ by the Pythagorean theorem, so we have $xy=120000$, so substituting into the other equation we have $90000=100(x+y)$, or $x+y=900$. Since we want $\dfrac{x+y}{2}$, the desired answer is $\boxed{450}$.

Solution 2 (Short & Simple)

Draw a good diagram. Draw $CH$ as an altitude of the triangle. Scale everything down by a factor of $100\sqrt{3}$, so that $AB=2\sqrt{3}$. Finally, call the center of the triangle U. Draw a cross-section of the triangle via line $CH$, which of course includes $P, Q$. From there, we can call $OU=h$. There are two crucial equations we can thus generate. WLOG set $PU<QU$, then we call $PU=d-h, QU=d+h$. First equation: using the Pythagorean Theorem on $\triangle UOB$, $h^2+2^2=d^2$. Next, using the tangent addition formula on angles $\angle PHU, \angle UHQ$ we see that after simplifying $-d^2+h^2=-4, 2d=3\sqrt{3}$ in the numerator, so $d=\frac{3\sqrt{3}}{2}$. Multiply back the scalar and you get $\boxed{450}$. Not that hard, was it?

Solution 3

To make numbers more feasible, we'll scale everything down by a factor of $100$ so that $\overline{AB}=\overline{BC}=\overline{AC}=6$. We should also note that $P$ and $Q$ must lie on the line that is perpendicular to the plane of $ABC$ and also passes through the circumcenter of $ABC$ (due to $P$ and $Q$ being equidistant from $A$, $B$, $C$), let $D$ be the altitude from $C$ to $AB$. We can draw a vertical cross-section of the figure then: [asy]pair C, D, I, P, Q, O; D=(0,0); C=(5.196152,0); P=(1.732051,7.37228); I=(1.732051,0); Q=(1.732051,-1.62772); O=(1.732051,2.87228); draw(C--Q--D--P--cycle); draw(C--D, dashed); draw(P--Q, dotted); draw(O--C, dotted); label("$C$", C, E); label("$D$", D, W); label("$I$", I, NW); label("$P$", P, N);  label("$Q$", Q, S);  label("$O$", O, SW); dot(O); dot(I);[/asy] We let $\angle PDI=\alpha$ so $\angle QDI=120^{\circ}-\alpha$, also note that $\overline{PO}=\overline{QO}=\overline{CO}=d$. Because $I$ is the centroid of $ABC$, we know that ratio of $\overline{CI}$ to $\overline{DI}$ is $2:1$. Since we've scaled the figure down, the length of $CD$ is $3\sqrt{3}$, from this it's easy to know that $\overline{CI}=2\sqrt{3}$ and $\overline{DI}=\sqrt{3}$. The following two equations arise: \begin{align} \sqrt{3}\tan{\left(\alpha\right)}+\sqrt{3}\tan{\left(120^{\circ}-\alpha\right)}&=2d \\ \sqrt{3}\tan{\left(\alpha\right)} - d &= \sqrt{d^{2}-12} \end{align} Using trig identities for the tangent, we find that \begin{align*} \sqrt{3}\tan{\left(120^{\circ}-\alpha\right)}&=\sqrt{3}\left(\frac{\tan{\left(120^{\circ}\right)}+\tan{\left(\text{-}\alpha\right)}}{1-\tan{\left(120^{\circ}\right)}\tan{\left(\text{-}\alpha\right)}}\right) \\ &= \sqrt{3}\left(\frac{\text{-}\sqrt{3}+\tan{\left(\text{-}\alpha\right)}}{1+\sqrt{3}\tan{\left(\text{-}\alpha\right)}}\right) \\ &= \sqrt{3}\left(\frac{\text{-}\sqrt{3}-\tan{\left(\alpha\right)}}{1-\sqrt{3}\tan{\left(\alpha\right)}}\right) \\ &= \frac{\sqrt{3}\tan{\left(\alpha\right)}+3}{\sqrt{3}\tan{\left(\alpha\right)}-1}.\end{align*} Okay, now we can plug this into $\left(1\right)$ to get: \begin{align}\sqrt{3}\tan{\left(\alpha\right)}+\frac{\sqrt{3}\tan{\left(\alpha\right)}+3}{\sqrt{3}\tan{\left(\alpha\right)}-1}&=2d \\ \sqrt{3}\tan{\left(\alpha\right)} - d &= \sqrt{d^{2}-12} \end{align} Notice that $\alpha$ only appears in the above system of equations in the form of $\sqrt{3}\tan{\left(\alpha\right)}$, we can set $\sqrt{3}\tan{\left(\alpha\right)}=a$ for convenience since we really only care about $d$. Now we have \begin{align}a+\frac{a+3}{a-1}&=2d \\ a - d &= \sqrt{d^{2}-12} \end{align} Looking at $\left(2\right)$, it's tempting to square it to get rid of the square-root so now we have: \begin{align*}a^{2}-2ad+d^{2}&=d^{2}-12 \\ a - 2ad &= \text{-}12 \end{align*} See the sneaky $2d$ in the above equation? That we means we can substitute it for $a+\frac{a+3}{a-1}$: \begin{align*}a^{2}-2ad+d^{2}&=d^{2}-12 \\ a^{2} - a\left(a+\frac{a+3}{a-1}\right) &= \text{-}12 \\ a^{2}-a^{2}-\frac{a^{2}+3a}{a-1} &=\text{-}12 \\ -\frac{a^{2}+3a}{a-1}&=\text{-}12 \\ \text{-}a^{2}-3a&=\text{-}12a+12 \\ 0 &= a^{2}-9a+12 \end{align*} Use the quadratic formula, we find that $a=\frac{9\pm\sqrt{9^{2}-4\left(1\right)\left(12\right)}}{2\left(1\right)}=\frac{9\pm\sqrt{33}}{2}$ - the two solutions were expected because $a$ can be $\angle PDI$ or $\angle QDI$. We can plug this into $\left(1\right)$: \begin{align*}a+\frac{a+3}{a-1}&=2d \\ \frac{9\pm\sqrt{33}}{2}+\frac{\frac{9\pm\sqrt{33}}{2}+3}{\frac{9\pm\sqrt{33}}{2}-1}=2d \\ \frac{9\pm\sqrt{33}}{2}+\frac{15\pm\sqrt{33}}{7\pm\sqrt{33}} &= 2d\end{align*} I'll use $a=\frac{9+\sqrt{33}}{2}$ because both values should give the same answer for $d$. \begin{align*} \frac{9+\sqrt{33}}{2}+\frac{15+\sqrt{33}}{7+\sqrt{33}} &= 2d \\ \frac{\left(9+\sqrt{33}\right)\left(7+\sqrt{33}\right)+\left(2\right)\left(15+\sqrt{33}\right)}{\left(2\right)\left(7+\sqrt{33}\right)} &= 2d \\ \frac{63+33+16\sqrt{33}+30+2\sqrt{33}}{14+2\sqrt{33}} &= 2d \\ \frac{126+18\sqrt{33}}{14+2\sqrt{33}} &= 2d \\ 9 &= 2d \\ \frac{9}{2} &= d\end{align*} Wait! Before you get excited, remember that we scaled the entire figure by $100$?? That means that the answer is $d=100\times\frac{9}{2}=\boxed{450}$. -fatant

Solution 4

We use the diagram from solution 3. From basic angle chasing, \[180=\angle{QOC}+\angle{CO}P=2\angle{OCP}+2\angle{OCQ}=2\angle{QCP}\] so triangle QCP is a right triangle. This means that triangles $CQI$ and $CPI$ are similar. If we let $\angle{IDQ}=x$ and $\angle{PDI}=y$, then we know $x+y=120$ and \[\frac{PG}{GC}=\frac{GC}{GQ}\Rightarrow\frac{100\sqrt{3}\tan{y}}{200\sqrt{3}}=\frac{200\sqrt{3}}{100\sqrt{3}\tan{x}}\Rightarrow\tan{x}\tan{y}=4\] We also know that \[PQ=2d=100\sqrt{3}(\tan{x}+\tan{y})\] \[d=50\sqrt{3}(\tan{x}+\tan{y})\] \[\frac{d}{1-\tan{x}\tan{y}}=50\sqrt{3}\cdot\frac{\tan{x}+\tan{y}}{1-\tan{x}\tan{y}}\] \[\frac{d}{-3}=50\sqrt{3}\tan{(x+y)}\] \[d=-150\sqrt{3}\tan{120}=-150\sqrt{3}(-\sqrt{3})=\boxed{450}\]

-EZmath2006

Solution 5

We use the diagram from solution 3.

Let $BP = a$ and $BQ = b$. Then, by Stewart's on $BPQ$, we find \[2x^3 + 2x^3 = a^2x + b^2x \implies a^2 + b^2 = 4x^2.\]

The altitude from $P$ to $ABC$ is $\sqrt{a^2 - (200\sqrt{3})^2}$ so \[PQ = 2x = \sqrt{a^2 - (200\sqrt{3})^2} + \sqrt{b^2 - (200\sqrt{3})^2}.\]

Furthermore, the altitude from $P$ to $AB$ is $\sqrt{a^2 - 300^2}$, so, by LoC and the dihedral condition, \[a^2 - 300^2 + b^2 - 300^2 + \sqrt{a^2 - 300^2}\sqrt{b^2-300^2} = 4x^2.\]

Squaring the equation for $PQ$ and substituting $a^2 + b^2  = 4x^2$ yields \[2\sqrt{a^2 - (200\sqrt{3})^2}\sqrt{b^2 - (200\sqrt{3})^2} = 6\cdot 200^2.\]

Substituting $a^2 + b^2 = 4x^2$ into the other equation, \[\sqrt{a^2 - 300^2}\sqrt{b^2-300^2} = 2\cdot 300^2.\]

Squaring both of these gives \[a^2b^2-3\cdot 200^2(a^2 + b^2) + 9\cdot 200^4 = 9\cdot 200^4\] \[a^2b^2 - 300^2(a^2+b^2) + 300^4 = 4\cdot 300^4.\]

Substituting $a^2 + b^2 = 4x^2$ and solving for $x$ gives $\boxed{450}$, as desired.

-mathtiger6

Solution 6 (Geometry)

2016 AIME II 14.png
2016 AIME II 14a.png

Let $AB = a, M$ be midpoint $BC, I$ be the center of equilateral $\triangle ABC,$ $IM = b = \frac {a}{2\sqrt{3}}, O$ be the center of sphere $ABCPQ.$ Then \[AI = 2b, AO = BO = PO =QO = d.\] \[QA=QB=QC,PA=PB=PC \implies\] \[POIQ\perp ABC, \angle PMQ = 120^\circ.\] (See upper diagram).

We construct the circle PQMD, use the formulas for intersecting chords and get \[DI = 5b, FI = EO = \frac{3b}{2}\] \[\implies FM = \frac{5b}{2}.\] (See lower diagram).

We apply the Law of Sine to $\triangle PMQ$ and get \[2EM \sin 120^\circ =PQ\] \[\implies r \sqrt{3} = 2d\] \[\implies 3r^2 = 4d^2.\] We apply the Pythagorean Law on $\triangle AOI$ and $\triangle EFM$ and get \[d^2 = 4b^2 + OI^2, r^2 = \frac {25b^2}{4} + EF^2 \implies\] \[r = 3b\implies d = \frac {3a}{2} = \boxed {450}.\] vladimir.shelomovskii@gmail.com, vvsss

Solution 7

Let $M$ be the midpoint of $\overline{AB}$ and $X$ the center of $\triangle ABC$. Then \[P, O, Q, M, X, C\] all lie in the same vertical plane. We can make the following observations:

  • The equilateral triangle has side length $600$, so $MC=300\sqrt{3}$ and $X$ divides $MC$ so that $MX=100\sqrt{3}$ and $XC=200\sqrt{3}$;
  • $O$ is the midpoint of $PQ$ since $O$ is equidistant from $A, B, C, P, Q$ – it is also the circumcenter of $\triangle PCQ$;
  • $\angle PMQ=120^{\circ}$, the dihedral angle.

To make calculations easier, we will denote $100\sqrt{3}=m$, so that $MX=m$ and $XC=2m$.

[asy] unitsize(20); pair P = (0, 12); pair Q = (0, -3); pair O = (P+Q)/2; pair M = (-3, 0); pair X = (0, 0); pair C = (6, 0); draw(P--O--Q); draw(M--X--C); draw(P--M--Q, blue); draw(Q--C--P); draw(circle((0, 4.5), 7.5)); label("$P$", P, N); label("$Q$", Q, S); label("$O$", O, E); dot(O); label("$M$", M, W); label("$X$", X, NE); label("$C$", C, E); label("$m$", (M+X)/2, N); label("$2m$", (X+C)/2, N); [/asy]

Denote $PX=p$ and $QX=q$, where the tangent addition formula on $\triangle PMQ$ yields \[\frac{\tan\measuredangle PMX+\tan\measuredangle QMX}{1-\tan\measuredangle PMX\tan\measuredangle QMX}=\tan(120^{\circ})=-\sqrt{3}.\] Using $\tan\measuredangle PMX=\frac{p}{m}$ and $\tan\measuredangle QMX=\frac{q}{m}$, we have \[\frac{\frac{p}{m}+\frac{q}{m}}{1-\frac{p}{m}\cdot\frac{q}{m}}=-\sqrt{3}.\] After multiplying both numerator and denominator by $m^{2}$ we have \[\frac{(p+q)m}{m^{2}-pq}=-\sqrt{3}.\] But note that $pq=(2m)(2m)=4m^{2}$ by power of a point at $X$, where we deduce by symmetry that $MM^{\prime}=MX=m$ on the diagram below: [asy] unitsize(20); pair P = (0, 12); pair Q = (0, -3); pair O = (P+Q)/2; pair M = (-3, 0); pair Mprime = (-6, 0); pair X = (0, 0); pair C = (6, 0); draw(P--O--Q); draw(Mprime--M--X--C); draw(P--M--Q, blue); draw(Q--C--P); draw(circle((0, 4.5), 7.5)); label("$P$", P, N); label("$Q$", Q, S); label("$O$", O, E); dot(O); label("$M$", M, S); label("$M^{\prime}$", Mprime, W); label("$X$", X, SE); label("$C$", C, E); label("$m$", (Mprime+M)/2, N); label("$m$", (M+X)/2, N); label("$2m$", (X+C)/2, N); [/asy]

Thus \begin{align*} \frac{(p+q)m}{m^{2}-4m^{2}}=-\sqrt{3} \\ \frac{p+q}{-3m}=-\sqrt{3} \\ p+q=\left(-\sqrt{3}\right)\left(-3m\right) \\ p+q=3\sqrt{3}\cdot m.\end{align*} Earlier we assigned the variable $m$ to the length $100\sqrt{3}$ which implies $PQ=\left(3\sqrt{3}\right)\left(100\sqrt{3}\right)=900$. Thus the distance $d$ is equal to $\frac{PQ}{2}=\boxed{450}$.

Solution 8 (Law of Cosines)

Let $Z$ be the center of $\triangle ABC$. Let $A’$ be the midpoint of $BC$. Let $ZA’ = c = 100\sqrt{3}$ and $ZA = 2c = 200\sqrt{3}$. Let $PZ = a$ and $QZ = b$. We will be working in the plane that contains the points: $A$, $P$, $A’$, $Q$, $O$, and $Z$.

Since $P$, $O$, and $Q$ are collinear and $PO = QO = AO$, $\triangle PAQ$ is a right triangle with $\angle PAQ = 90^{\circ}$. Since $AZ \perp PQ$, $(PZ)(QZ) = (AZ)^2 = ab = (2c)^2 = 120000$.

$PA’ = \sqrt{a^2 + c^2}$, $QA’ = \sqrt{b^2 + c^2}$, $PQ = a + b$, and $\angle PAQ = 120^{\circ}$. By Law of Cosines \[(a + b)^2 = a^2 + b^2 + 2c^2 + \sqrt{a^2b^2 + a^2c^2 + b^2c^2 + c^4}\]. Substituting $4c^2$ for $ab$ and simplifying, we get \[6c = \sqrt{17c^2 + a^2 + b^2}\]. Squaring and simplifying, we get \[a^2 + b^2 = 19c^2 = 570000\]. Adding $2ab = 8c^2$ to both sides we get $PQ = a + b = 900$. Since $O$ is the midpoint of $PQ$, $d = PO = \boxed{450}$

~numerophile

Solution 9 (Coordinate Bash)

Set $AB = s, M$ as midpoint $BC, I$ as the center of equilateral $\triangle ABC,$ and by $30-60-90$ triangle formulas, we know $IM = b = \frac {s}{2\sqrt{3}}, IA = IB = IC = \frac{s}{\sqrt{3}}$.

First note that $P$ and $Q$ are on the line perpendicular to plane $ABC$ through the circumcenter of $\triangle ABC$. Then notice that point $O$ is the midpoint of $PQ$, so it also lies on this axis. Then, we see that the position of $O$ relative to the triangle fully determines the positions of both $P$ and $Q$, so setting the coordinates of $O$ as $(0,0,h)$ where the origin is defined the circumcenter and $\triangle ABC$ lies in the $xy$-plane, we get: \begin{align*} OA^2 = OB^2 = OC^2 = h^2+\frac{s^2}{3} = OP^2 = OQ^2 \end{align*}

Thus, the coordinates of $P$ and $Q$ are $(0,0,h\pm\sqrt{h^2+\frac{s^2}{3}})$. Now we make use of the angle condition. WLOG set the coordinates of $M$ as $(\frac{s}{2\sqrt{3}},0,0)$. We know the angle between $PM$ and $QM$ is $120^{\circ}$, so after solving for the vectors, taking their dot product, equating it to $PM \cdot QM \cdot\cos{120^{\circ}}$, and $\textit{finally}$ solving for $h$ in terms of $s$, we get \[ h^2 = \frac{11}{48}s^2 \\ \implies OA^2 = h^2 + \frac{s^2}{3} = \frac{27}{48}s^2 \\ \implies OA = \frac{3}{4}s = \boxed{450} \]

(If someone feels like it, please feel free to fill in the rest of the details!)

~ninjaforce

Video Solution by MOP 2024

https://youtu.be/hyhIlsAR2hs

~r00tsOfUnity

See also

2016 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png