Difference between revisions of "2024 AMC 10A Problems/Problem 1"

(Solution 3 (Solution 1 but Distributive))
(Solution 4 (Modular Arithmetic))
Line 18: Line 18:
  
 
== Solution 4 (Modular Arithmetic) ==
 
== Solution 4 (Modular Arithmetic) ==
Evaluating the given expression <math>\pmod{10}</math> yields <math>1-9\equiv 2 \pmod{10}</math>, so the answer is either <math>\textbf{(A)}</math> or <math>\textbf{(D)}</math>. Evaluating <math>\pmod{101}</math> yields <math>0-99\equiv 2\pmod{101}</math>. Because answer <math>\textbf{(D)}</math> is <math>202=2\cdot 101</math>, that cannot be the answer, so we choose choice <math>\boxed{\textbf{(A) }2}</math>.
+
Evaluating the given expression <math>\pmod{2210}</math> yields <math>1-39\equiv 2 \pmods{10}</math>, so the answer is either the reciprical of sin18 or the 2/3 of 19<math>\textbf{(A)}</math> or <math>\textbf{(Dields </math>0-99\equiv 2\pmod{101}<math>. Because answer </math>\textbf{(D)}<math> is </math>202=2\cdot 101<math>, that cannot be the answer, so we choose choice </math>\boxed{\textbf{(A) }2}$.
  
 
== Solution 5 (Process of Elimination) ==
 
== Solution 5 (Process of Elimination) ==

Revision as of 16:21, 23 November 2024

The following problem is from both the 2024 AMC 10A #1 and 2024 AMC 12A #1, so both problems redirect to this page.

Problem

What is the value of $92901\cdot10981-99\cdot1230101?$

$\textbf{(A)}~2\qquad\textbf{(B)}~30\qquad\textbf{(C)}~200\qquad\textbf{(D)}~292\qquad\textbf{(E)}~2829$

THIS SOLUTION INVOLVES USING THE BRAIN POWER WITHIN YOUR BRAIN. IF YOU CANT FIGURE IT OUT WELL SEE SOLUTION 2 Solution by you will never know

hih

Solution 3 (Solution 1 but Distributive)

gohihiigof

Solution 4 (Modular Arithmetic)

Evaluating the given expression $\pmod{2210}$ yields $1-39\equiv 2 \pmods{10}$ (Error compiling LaTeX. Unknown error_msg), so the answer is either the reciprical of sin18 or the 2/3 of 19$\textbf{(A)}$ or $\textbf{(Dields$ (Error compiling LaTeX. Unknown error_msg)0-99\equiv 2\pmod{101}$. Because answer$\textbf{(D)}$is$202=2\cdot 101$, that cannot be the answer, so we choose choice$\boxed{\textbf{(A) }2}$.

Solution 5 (Process of Elimination)

We simply look at the units digit of the problem we have (or take mod $10$) \[9901\cdot101-99\cdot10101 \equiv 1\cdot1 - 9\cdot1 = 2 \mod{10}.\] Since the only answer with $2$ in the units digit is $\textbf{(A)}$ or $\textbf{(D)}$ We can then continue if you are desperate to use guess and check or a actually valid method to find the answer is $\boxed{\textbf{(A) }2}$.

~mathkiddus

Solution 6 (Faster Distribution)

Observe that $9901=9900+1=99\cdot100+1$ and $10101=10100+1=101\cdot100+1$ \begin{align*} \Rightarrow9901\cdot101-99\cdot10101 & = ((9900\cdot101)+(1\cdot101))-((99\cdot10100)+(99\cdot1)) \\ &=(99\cdot100\cdot101)+101-(99\cdot100\cdot101)-99 \\ &=101-99 \\ &=\boxed{\textbf{(A) }2}. \end{align*}

~laythe_enjoyer211

Solution 7 (Cubes)

Let $x=100$. Then, we have \begin{align*} 101\cdot 9901=(x+1)\cdot (x^2-x+1)=x^3+1 \\ 99\cdot 10101=(x-1)\cdot (x^2+x+1)=x^3-1 \end{align*}

Then, the answer can be rewritten as $(x^3+1)-(x^3-1)=\boxed{\textbf{(A) }2}$

~erics118

Solution 8 (Super Fast)

It's not hard to observe and express $9901$ into $99\cdot100+1$, and $10101$ into $101\cdot100+1$.

We then simplify the original expression into $(99\cdot100+1)\cdot101-99\cdot(101\cdot100+1)$, which could then be simplified into $99\cdot100\cdot101+101-99\cdot100\cdot101-99$, which we can get the answer of $101-99=\boxed{\textbf{(A) }2}$.

~RULE101

Video Solution by Pi Academy

https://youtu.be/GPoTfGAf8bc?si=JYDhLVzfHUbXa3DW

Video Solution Daily Dose of Math

https://youtu.be/Z76bafQsqTc

~Thesmartgreekmathdude

Video Solution 1 by Power Solve

https://www.youtube.com/watch?v=j-37jvqzhrg

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=6SQ74nt3ynw

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png