Difference between revisions of "2009 AMC 10A Problems/Problem 1"

m (Solution 1)
m (Solution 1)
 
Line 9: Line 9:
  
 
== Solution 1 ==
 
== Solution 1 ==
<math>10</math> cans would hold <math>120</math> ounces, but <math>128>120</math>, so <math>11</math> cans are required. Thus, the answer is <math>\mathrm{\boxed{\text{(E)}11}}</math>.
+
<math>10</math> cans would hold <math>120</math> ounces, but <math>128>120</math>, so <math>11</math> cans are required. Thus, the answer is <math>\mathrm{\boxed{{(E)}11}}</math>.
  
 
== Solution 2 ==
 
== Solution 2 ==

Latest revision as of 13:38, 22 November 2024

Problem

One can holds $12$ ounces of soda, what is the minimum number of cans needed to provide a gallon ($128$ ounces) of soda?

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 11$

Solution 1

$10$ cans would hold $120$ ounces, but $128>120$, so $11$ cans are required. Thus, the answer is $\mathrm{\boxed{{(E)}11}}$.

Solution 2

We want to find $\left\lceil\frac{128}{12}\right\rceil$ because there are a whole number of cans.

$\frac{128}{12} = 10R8\longrightarrow 11\longrightarrow \fbox{(E)}.$

See Also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png