Difference between revisions of "2025 AIME I Problems/Problem 14"
(Blanked the page) (Tag: Blanking) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | Let <math>ABCDE</math> be a convex pentagon with <math>AB=14,</math> <math>BC=7,</math> <math>CD=24,</math> <math>DE=13,</math> <math>EA=26,</math> and <math>\angle B=\angle E=60^{\circ}.</math> For each point <math>X</math> in the plane, define <math>f(X)=AX+BX+CX+DX+EX.</math> The least possible value of <math>f(X)</math> can be expressed as <math>m+n\sqrt{p},</math> where <math>m</math> and <math>n</math> are positive integers and <math>p</math> is not divisible by the square of any prime. Find <math>m+n+p.</math> | ||
+ | |||
+ | ==See also== | ||
+ | {{AIME box|year=2025|num-b=12|num-a=14|n=I}} | ||
+ | |||
+ | {{MAA Notice}} |
Revision as of 20:10, 13 February 2025
Problem
Let be a convex pentagon with
and
For each point
in the plane, define
The least possible value of
can be expressed as
where
and
are positive integers and
is not divisible by the square of any prime. Find
See also
2025 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.