Difference between revisions of "2024 AMC 10B Problems/Problem 4"
Jj empire10 (talk | contribs) |
(→Solution 2) |
||
Line 35: | Line 35: | ||
− | == | + | == Solution 2 == |
− | + | [[Image: 2024_AMC_12B_P04.jpeg|thumb|center|600px|]] | |
− | + | ~Kathan | |
− |
Revision as of 13:42, 14 November 2024
- The following problem is from both the 2024 AMC 10B #4 and 2024 AMC 12B #4, so both problems redirect to this page.
Problem
Balls numbered 1, 2, 3, ... are deposited in 5 bins, labeled A, B, C, D, and E, using the following procedure. Ball 1 is deposited in bin A, and balls 2 and 3 are deposited in bin B. The next 3 balls are deposited in bin C, the next 4 in bin D, and so on, cycling back to bin A after balls are deposited in bin E. (For example, balls numbered 22, 23, ..., 28 are deposited in bin B at step 7 of this process.) In which bin is ball 2024 deposited?
Solution 1
Consider the triangular array of numbers: .
The numbers in a row congruent to will be in bucket A. Similarly, the numbers in a row congruent to will be in buckets B, C, D, and E respectively. Note that the row ends with the triangle number, .
We must find values of , that make close to .
Trying we find that . Since, will be the last ball in row , ball will be in row . Since , ball will be placed in bucket .
~numerophile
Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)
https://youtu.be/DIl3rLQQkQQ?feature=shared
~ Pi Academy
Solution 2
~Kathan