Difference between revisions of "2024 AMC 10B Problems/Problem 24"
(→Solution (The simplest way)) |
m (certain china test papers) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math> | <math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math> | ||
+ | |||
+ | Certain China test papers: | ||
+ | Let | ||
+ | <cmath>P(m)=\frac{m}{2}+\frac{m^2}{4}+\frac{m^4}{8}+\frac{m^8}{8}</cmath> | ||
+ | How many of the values <math>P(2022)</math>, <math>P(2023)</math>, <math>P(2024)</math>, <math>P(2025)</math> and <math>P(2026)</math> are integers? | ||
+ | |||
+ | <math>\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } 5</math> | ||
==Solution (The simplest way)== | ==Solution (The simplest way)== |
Revision as of 06:56, 14 November 2024
Problem
Let How many of the values , , , and are integers?
Certain China test papers: Let How many of the values , , , and are integers?
Solution (The simplest way)
Here is the English translation with selective LaTeX formatting:
First, we know that and must be integers since they are both divisible by .
Then Let’s consider the remaining two numbers. Since they are not divisible by , the result of the first term must be a certain number , and the result of the second term must be a certain number . Similarly, the remaining two terms must each be . Their sum is , so and are also integers.
Therefore, the answer is .
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.