Difference between revisions of "2024 AMC 12B Problems/Problem 15"
(→Solution 1 (Shoelace Theorem)) |
(→Solution 2) |
||
Line 26: | Line 26: | ||
− | ==Solution 2== | + | ==Solution 2 (Determinant)== |
To calculate the area of a triangle formed by three points \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \) on a Cartesian coordinate plane, you can use the following formula: | To calculate the area of a triangle formed by three points \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \) on a Cartesian coordinate plane, you can use the following formula: | ||
− | + | <cmath> | |
\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| | \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| | ||
− | + | </cmath> | |
The coordinates are: | The coordinates are: | ||
− | - | + | - <cmath>A(0, 1)</cmath> |
− | - | + | - <cmath>B(\log_2 3, 2)</cmath> |
− | - | + | - <cmath>C(\log_2 7, 3)</cmath> |
− | + | Taking a numerical value into account: | |
− | + | <cmath> | |
\text{Area} = \frac{1}{2} \left| 0 \cdot (2 - 3) + \log_2 3 \cdot (3 - 1) + \log_2 7 \cdot (1 - 2) \right| | \text{Area} = \frac{1}{2} \left| 0 \cdot (2 - 3) + \log_2 3 \cdot (3 - 1) + \log_2 7 \cdot (1 - 2) \right| | ||
− | + | </cmath> | |
Simplify: | Simplify: | ||
− | + | <cmath> | |
= \frac{1}{2} \left| 0 + \log_2 3 \cdot 2 + \log_2 7 \cdot (-1) \right| | = \frac{1}{2} \left| 0 + \log_2 3 \cdot 2 + \log_2 7 \cdot (-1) \right| | ||
− | + | </cmath> | |
− | + | <cmath> | |
= \frac{1}{2} \left| \log_2 (3^2) - \log_2 7 \right| | = \frac{1}{2} \left| \log_2 (3^2) - \log_2 7 \right| | ||
− | + | </cmath> | |
− | + | <cmath> | |
= \frac{1}{2} \left| \log_2 \frac{9}{7} \right| | = \frac{1}{2} \left| \log_2 \frac{9}{7} \right| | ||
− | + | </cmath> | |
Thus, the exact area is: | Thus, the exact area is: | ||
− | + | <cmath> | |
\text{Area} = \frac{1}{2} \left| \log_2 \frac{9}{7} \right| | \text{Area} = \frac{1}{2} \left| \log_2 \frac{9}{7} \right| | ||
− | + | </cmath> | |
− | + | <cmath> | |
\boxed{\text{B. \log_2 \frac{3}{\sqrt{7}}}} | \boxed{\text{B. \log_2 \frac{3}{\sqrt{7}}}} | ||
− | + | </cmath> | |
+ | |||
+ | --- | ||
+ | |||
+ | This format with `<math></math>` will make Obsidian recognize all the mathematical expressions as standalone blocks, rendering them properly in mathematical form. |
Revision as of 05:23, 14 November 2024
Problem
A triangle in the coordinate plane has vertices , , and . What is the area of ?
Solution 1 (Shoelace Theorem)
We rewrite: .
From here we setup Shoelace Theorem and obtain: .
Following log properties and simplifying gives (B).
~MendenhallIsBald
Solution 2 (Determinant)
To calculate the area of a triangle formed by three points \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \) on a Cartesian coordinate plane, you can use the following formula:
The coordinates are:
- - -
Taking a numerical value into account:
Simplify:
Thus, the exact area is:
\[\boxed{\text{B. \log_2 \frac{3}{\sqrt{7}}}}\] (Error compiling LaTeX. Unknown error_msg)
---
This format with `$$ (Error compiling LaTeX. Unknown error_msg)` will make Obsidian recognize all the mathematical expressions as standalone blocks, rendering them properly in mathematical form.