Difference between revisions of "Riemann sum"
(New page: A '''Reimann sum''' is a finite approximation to the Reimann Integral ==Definition== Let <math>f:[a,b]\rightarro\mathbb{R}</math> Let <math>\mathcal{\dot{P}}=\{([x_{i-1},x_i...) |
m (LaTeX) |
||
Line 2: | Line 2: | ||
==Definition== | ==Definition== | ||
− | Let <math>f:[a,b]\ | + | Let <math>f:[a,b]\rightarrow\mathbb{R}</math> |
Let <math>\mathcal{\dot{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n</math> be a [[Partition of an interval|tagged partition]] on <math>[a,b]</math> | Let <math>\mathcal{\dot{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n</math> be a [[Partition of an interval|tagged partition]] on <math>[a,b]</math> | ||
− | The '''Reimann sum''' of <math>f</math> with respect to <math>\mathcal{\dot{P}}</math> on <math>[a,b]</math> is defined as <math>S(f,\mathcal{\dot{P}})= | + | The '''Reimann sum''' of <math>f</math> with respect to <math>\mathcal{\dot{P}}</math> on <math>[a,b]</math> is defined as <math>S(f,\mathcal{\dot{P}})=\sum_{i=1}^n f(t_i)(x_i-x_{i-1})</math> |
==Related Tems== | ==Related Tems== | ||
===The Upper sum=== | ===The Upper sum=== | ||
− | Let <math>f:[a,b]\ | + | Let <math>f:[a,b]\rightarrow\mathbb{R}</math> |
Let <math>\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n</math> be a [[Partition of an interval|partition]] on <math>[a,b]</math> | Let <math>\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n</math> be a [[Partition of an interval|partition]] on <math>[a,b]</math> | ||
Line 16: | Line 16: | ||
Let <math>M_i=\sup \{f(x):x\in [x_{i-1},x_i]\}\forall i</math> | Let <math>M_i=\sup \{f(x):x\in [x_{i-1},x_i]\}\forall i</math> | ||
− | The '''Upper sum''' of <math>f</math> with respect to <math>\mathcal{P}</math> on <math>[a,b]</math> is defined as <math>U(f,\mathcal{P})= | + | The '''Upper sum''' of <math>f</math> with respect to <math>\mathcal{P}</math> on <math>[a,b]</math> is defined as <math>U(f,\mathcal{P})=\sum_{i=1}^n M_i (x_i-x_{i-1})</math> |
===The Lower sum=== | ===The Lower sum=== | ||
− | Let <math>f:[a,b]\ | + | Let <math>f:[a,b]\rightarrow\mathbb{R}</math> |
Let <math>\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n</math> be a [[Partition of an interval|partition]] on <math>[a,b]</math> | Let <math>\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n</math> be a [[Partition of an interval|partition]] on <math>[a,b]</math> | ||
Line 25: | Line 25: | ||
Let <math>m_i=\inf \{f(x):x\in [x_{i-1},x_i]\}\forall i</math> | Let <math>m_i=\inf \{f(x):x\in [x_{i-1},x_i]\}\forall i</math> | ||
− | The '''Lower sum''' of <math>f</math> with respect to <math>\mathcal{P}</math> on <math>[a,b]</math> is defined as <math>L(f,\mathcal{P})= | + | The '''Lower sum''' of <math>f</math> with respect to <math>\mathcal{P}</math> on <math>[a,b]</math> is defined as <math>L(f,\mathcal{P})=\sum_{i=1}^n m_i (x_i-x_{i-1})</math> |
==See Also== | ==See Also== |
Revision as of 00:58, 16 February 2008
A Reimann sum is a finite approximation to the Reimann Integral
Definition
Let
Let be a tagged partition on
The Reimann sum of with respect to on is defined as
Related Tems
The Upper sum
Let
Let be a partition on
Let
The Upper sum of with respect to on is defined as
The Lower sum
Let
Let be a partition on
Let
The Lower sum of with respect to on is defined as
See Also
This article is a stub. Help us out by expanding it.