Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 15"
(wrote solution) |
|||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | |||
+ | Let <cmath> x := k^2 + k + 1</cmath> | ||
+ | <cmath>a_k := \cos^{-1}\left(\frac{k^2 + k + 1}{\sqrt{k^4 + 2k^3 + 3k^2 + 2k + 2}} \right )</cmath> | ||
+ | |||
+ | Factoring the radicand, we have | ||
+ | <cmath>a_k = \cos^{-1}\left(\frac{x}{\sqrt{x^2+1}} \right )</cmath> | ||
+ | The fraction looks remarkably apt for a trigonometric substitution; namely, define <math>\theta</math> such that <math> x = \tan{\theta}</math>. Then the RHS becomes | ||
+ | <cmath>a_k = \cos^{-1}\left(\frac{\tan{\theta}}{\sec{\theta}} \right ) = \cos^{-1}{(\sin{\theta})}</cmath> | ||
+ | But <cmath>\cos{(\pi/2-\theta)} = \sin{\theta}</cmath> | ||
+ | Therefore, | ||
+ | <cmath> a_k = \pi/2 - \theta = \pi/2 - \tan^{-1}{x} </cmath> | ||
+ | This gives us | ||
+ | <cmath> \tan{a_k} = \tan{(\pi/2 - \tan^{-1}{x})} </cmath> | ||
+ | <cmath> = \cot{(\tan^{-1}{x})} = \dfrac{1}{\tan{(\tan^{-1}{x})} } </cmath> | ||
+ | <cmath> = \dfrac{1}{x} = \dfrac{1}{k^2+k+1} </cmath> | ||
+ | So now | ||
+ | <cmath> a_k = \tan^{-1}{\left( \dfrac{1}{k^2+k+1} \right) } </cmath> | ||
+ | <cmath> = \tan^{-1}{ \left( \dfrac{ (k+1) + (-k) }{ 1 - (-k)(k+1) } \right ) } </cmath> | ||
+ | <cmath> = \tan^{-1}{(k+1)} - \tan^{-1}{k} </cmath> | ||
+ | When we sum <math>a_k</math>, this sum now telescopes: | ||
+ | <cmath>\Omega = \sum_{k=1}^{40} a_k </cmath> | ||
+ | <cmath> = \sum_{k=1}^{40} \tan^{-1}{(k+1)} - \tan^{-1}{k} </cmath> | ||
+ | <cmath> = \tan^{-1}{40} - \tan^{-1}{1} </cmath> | ||
+ | Therefore, the required value | ||
+ | <cmath> \tan{\Omega} = \tan{(\tan^{-1}{40} - \tan^{-1}{1})} </cmath> | ||
+ | <cmath> = \dfrac{ 40 - 1}{1 + 40 \cdot 1 } </cmath> | ||
+ | <cmath> = \dfrac{39}{41} </cmath> | ||
+ | giving us the desired answer of <math>\boxed{80}</math>. | ||
==See also== | ==See also== |
Revision as of 00:25, 11 March 2009
Problem
Let denote the value of the sum
The value of can be expressed as , where and are relatively prime positive integers. Compute .
Solution
Let
Factoring the radicand, we have The fraction looks remarkably apt for a trigonometric substitution; namely, define such that . Then the RHS becomes But Therefore, This gives us So now When we sum , this sum now telescopes: Therefore, the required value giving us the desired answer of .