Difference between revisions of "2024 AMC 12A Problems/Problem 24"

(fix)
Line 4: Line 4:
 
<math>\textbf{(A) }\sqrt{3}\qquad\textbf{(B) }3\sqrt{15}\qquad\textbf{(C) }15\qquad\textbf{(D) }15\sqrt{7}\qquad\textbf{(E) }24\sqrt{6}</math>
 
<math>\textbf{(A) }\sqrt{3}\qquad\textbf{(B) }3\sqrt{15}\qquad\textbf{(C) }15\qquad\textbf{(D) }15\sqrt{7}\qquad\textbf{(E) }24\sqrt{6}</math>
  
==Solution==
+
==Solution 1 (Definition of disphenoid)==
Notice that any scalene acute triangle can be the faces of a <math>\textit{disphenoid}</math>. As a result, we simply have to find the smallest area a scalene acute triangle with integer side lengths can take on. This occurs with a <math>4,5,6</math> triangle (notice that if you decrease the value of any of the sides the resulting triangle will either be isosceles, degenerate, or non-acute). For this triangle, the semiperimeter is <math>\frac{15}{2}</math>, so by Heron’s Formula:
+
By definition, if a <math>\textit{disphenoid}</math> has sides <math>x,y,z</math> such that <math>x<y<z</math> (since it is scalene), then we must have <math>x^2+y^2>z^2</math>. Clearly the smallest triple of <math>(x,y,z)</math> is <math>(4,5,6)</math>. Then using Heron's formula gives us Surface area<math>= 4\sqrt{\frac{15}{2}(\frac{7}{2})(\frac{3}{2})(\frac{1}{2})}=15\sqrt{7}</math>
 
 
<cmath>A=\sqrt{\frac{15}{2}\cdot\frac{7}{2}\cdot\frac{5}{2}\cdot\frac{3}{2}}</cmath>
 
<cmath>=\sqrt{\frac{15^2\cdot7}{16}}</cmath>
 
<cmath>=\frac{15}{4}\sqrt{7}</cmath>
 
 
 
The surface area is simply four times the area of one of the triangles, or <math>\boxed{\textbf{(D) }15\sqrt{7}}</math>.
 
 
 
~eevee9406
 
 
 
 
==See also==
 
==See also==
 
{{AMC12 box|year=2024|ab=A|num-b=23|num-a=25}}
 
{{AMC12 box|year=2024|ab=A|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:18, 8 November 2024

Problem

A $\textit{disphenoid}$ is a tetrahedron whose triangular faces are congruent to one another. What is the least total surface area of a disphenoid whose faces are scalene triangles with integer side lengths?

$\textbf{(A) }\sqrt{3}\qquad\textbf{(B) }3\sqrt{15}\qquad\textbf{(C) }15\qquad\textbf{(D) }15\sqrt{7}\qquad\textbf{(E) }24\sqrt{6}$

Solution 1 (Definition of disphenoid)

By definition, if a $\textit{disphenoid}$ has sides $x,y,z$ such that $x<y<z$ (since it is scalene), then we must have $x^2+y^2>z^2$. Clearly the smallest triple of $(x,y,z)$ is $(4,5,6)$. Then using Heron's formula gives us Surface area$= 4\sqrt{\frac{15}{2}(\frac{7}{2})(\frac{3}{2})(\frac{1}{2})}=15\sqrt{7}$

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png