Difference between revisions of "Mock AIME 4 2006-2007 Problems/Problem 7"
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | <math>\ | + | Using the [[Carmichael function]], we have <math>\lambda(1000)=100</math>, so <math>3^{100}=1\pmod{1000}</math>. Therefore, letting <math>N=3^{3^3}</math>, we seek to find an <math>n</math> such that <math>N\equiv n\pmod{100}</math> so that <math>3^N\equiv 3^n\pmod{1000}</math>. |
− | + | Using the Carmichael function again, we have <math>\lambda(100)=20</math>, so <math>N=3^{27}\equiv 3^7\pmod{100}\equiv 87\pmod{100}</math>. Therefore <math>n=87</math>, and so we have the following: | |
− | + | <cmath> | |
− | + | 3^{3^{3^3}}\equiv 3^{87}\pmod{1000}. | |
− | + | </cmath> | |
− | <math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | Now, <math>3^{87}=(3^{20})^4\cdot 3^7\equiv 401^4\cdot 187\pmod{1000}\equiv 601\cdot 187\pmod{1000}\equiv \boxed{387}\pmod{1000}</math>. | ||
== See also== | == See also== | ||
Revision as of 23:15, 4 January 2010
Problem
Find the remainder when is divided by 1000.
Solution
Using the Carmichael function, we have , so . Therefore, letting , we seek to find an such that so that .
Using the Carmichael function again, we have , so . Therefore , and so we have the following:
Now, .