Difference between revisions of "2024 AMC 12A Problems/Problem 19"
m |
|||
Line 7: | Line 7: | ||
First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals. | First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals. | ||
Let <math>AC=u</math>. We apply the [[Law of Cosines]] on <math>\triangle ACD</math>: | Let <math>AC=u</math>. We apply the [[Law of Cosines]] on <math>\triangle ACD</math>: | ||
− | <cmath>u^2=3^2+5^2-2(3)(5)\cos120</cmath> | + | <cmath>u^2=3^2+5^2-2(3)(5)\cos120^\circ</cmath> |
<cmath>u=7</cmath> | <cmath>u=7</cmath> | ||
+ | |||
+ | |||
Let <math>AB=v</math>. Apply the Law of Cosines on <math>\triangle ABC</math>: | Let <math>AB=v</math>. Apply the Law of Cosines on <math>\triangle ABC</math>: | ||
− | <cmath>7^2=3^2+v^2-2(3)(v)\cos60</cmath> | + | <cmath>7^2=3^2+v^2-2(3)(v)\cos60^\circ</cmath> |
<cmath>v=\frac{3\pm13}{2}</cmath> | <cmath>v=\frac{3\pm13}{2}</cmath> | ||
<cmath>v=8</cmath> | <cmath>v=8</cmath> | ||
+ | |||
+ | |||
By Ptolemy’s Theorem, | By Ptolemy’s Theorem, | ||
<cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath> | <cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath> | ||
<cmath>8 \cdot 3+5 \cdot 3=7BD</cmath> | <cmath>8 \cdot 3+5 \cdot 3=7BD</cmath> | ||
<cmath>BD=\frac{39}{7}</cmath> | <cmath>BD=\frac{39}{7}</cmath> | ||
− | Since <math>\frac{39}{7}<5</math> | + | Since <math>\frac{39}{7}<5</math>, |
The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>. | The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>. | ||
Revision as of 18:08, 8 November 2024
Problem
Cyclic quadrilateral has lengths and with . What is the length of the shorter diagonal of ?
Solution 1
First, by properties of cyclic quadrilaterals. Let . We apply the Law of Cosines on :
Let . Apply the Law of Cosines on :
By Ptolemy’s Theorem,
Since ,
The answer is .
~formatting by eevee9406
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.