Difference between revisions of "2024 AMC 12A Problems/Problem 19"

(solution 1)
Line 1: Line 1:
==solution 1==
+
==Problem==
<math>\angle CBA=60 ^\circ</math> by Circle Theorem}
+
Cyclic quadrilateral <math>ABCD</math> has lengths <math>BC=CD=3</math> and <math>DA=5</math> with <math>\angle CDA=120^\circ</math>. What is the length of the shorter diagonal of <math>ABCD</math>?
Let <math>AC=u</math>, apply cosine law on <math>\triangle ACD</math>
+
 
<cmath>u^2=3^2+5^2-2(3)(5)cos120</cmath>
+
<math>\textbf{(A) }\frac{31}7 \qquad \textbf{(B) }\frac{33}7 \qquad \textbf{(C) }5 \qquad \textbf{(D) }\frac{39}7 \qquad \textbf{(E) }\frac{41}7 \qquad</math>
 +
 
 +
==Solution 1==
 +
First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals.
 +
Let <math>AC=u</math>. We apply the [[Law of Cosines]] on <math>\triangle ACD</math>:
 +
<cmath>u^2=3^2+5^2-2(3)(5)\cos120</cmath>
 
<cmath>u=7</cmath>
 
<cmath>u=7</cmath>
Let <math>AB=v</math>, apply cosine law on <math>\triangle ABC</math>
+
Let <math>AB=v</math>. Apply the Law of Cosines on <math>\triangle ABC</math>:
<cmath>7^2=3^2+v^2-2(3)(v)cos60</cmath>
+
<cmath>7^2=3^2+v^2-2(3)(v)\cos60</cmath>
 
<cmath>v=\frac{3\pm13}{2}</cmath>
 
<cmath>v=\frac{3\pm13}{2}</cmath>
 
<cmath>v=8</cmath>
 
<cmath>v=8</cmath>
By Ptolemy Theorem,
+
By Ptolemy’s Theorem,
 
<cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath>
 
<cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath>
 
<cmath>8 \cdot 3+5 \cdot 3=7BD</cmath>
 
<cmath>8 \cdot 3+5 \cdot 3=7BD</cmath>
 
<cmath>BD=\frac{39}{7}</cmath>
 
<cmath>BD=\frac{39}{7}</cmath>
 
Since <math>\frac{39}{7}<5</math>
 
Since <math>\frac{39}{7}<5</math>
The answer is <math>\fbox{(D) \frac{39}{7} }</math>
+
The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>.
 +
 
 +
~formatting by eevee9406
 +
 
 +
==See also==
 +
{{AMC12 box|year=2024|ab=A|num-b=18|num-a=20}}
 +
{{MAA Notice}}

Revision as of 18:07, 8 November 2024

Problem

Cyclic quadrilateral $ABCD$ has lengths $BC=CD=3$ and $DA=5$ with $\angle CDA=120^\circ$. What is the length of the shorter diagonal of $ABCD$?

$\textbf{(A) }\frac{31}7 \qquad \textbf{(B) }\frac{33}7 \qquad \textbf{(C) }5 \qquad \textbf{(D) }\frac{39}7 \qquad \textbf{(E) }\frac{41}7 \qquad$

Solution 1

First, $\angle CBA=60 ^\circ$ by properties of cyclic quadrilaterals. Let $AC=u$. We apply the Law of Cosines on $\triangle ACD$: \[u^2=3^2+5^2-2(3)(5)\cos120\] \[u=7\] Let $AB=v$. Apply the Law of Cosines on $\triangle ABC$: \[7^2=3^2+v^2-2(3)(v)\cos60\] \[v=\frac{3\pm13}{2}\] \[v=8\] By Ptolemy’s Theorem, \[AB \cdot CD+AD \cdot BC=AC \cdot BD\] \[8 \cdot 3+5 \cdot 3=7BD\] \[BD=\frac{39}{7}\] Since $\frac{39}{7}<5$ The answer is $\boxed{\textbf{(D) }\frac{39}{7}}$.

~formatting by eevee9406

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png