Difference between revisions of "2024 AMC 12A Problems/Problem 19"
(→solution 1) |
|||
Line 1: | Line 1: | ||
− | == | + | ==Problem== |
− | <math>\angle CBA=60 ^\circ</math> by | + | Cyclic quadrilateral <math>ABCD</math> has lengths <math>BC=CD=3</math> and <math>DA=5</math> with <math>\angle CDA=120^\circ</math>. What is the length of the shorter diagonal of <math>ABCD</math>? |
− | Let <math>AC=u</math> | + | |
− | <cmath>u^2=3^2+5^2-2(3)(5)cos120</cmath> | + | <math>\textbf{(A) }\frac{31}7 \qquad \textbf{(B) }\frac{33}7 \qquad \textbf{(C) }5 \qquad \textbf{(D) }\frac{39}7 \qquad \textbf{(E) }\frac{41}7 \qquad</math> |
+ | |||
+ | ==Solution 1== | ||
+ | First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals. | ||
+ | Let <math>AC=u</math>. We apply the [[Law of Cosines]] on <math>\triangle ACD</math>: | ||
+ | <cmath>u^2=3^2+5^2-2(3)(5)\cos120</cmath> | ||
<cmath>u=7</cmath> | <cmath>u=7</cmath> | ||
− | Let <math>AB=v</math> | + | Let <math>AB=v</math>. Apply the Law of Cosines on <math>\triangle ABC</math>: |
− | <cmath>7^2=3^2+v^2-2(3)(v)cos60</cmath> | + | <cmath>7^2=3^2+v^2-2(3)(v)\cos60</cmath> |
<cmath>v=\frac{3\pm13}{2}</cmath> | <cmath>v=\frac{3\pm13}{2}</cmath> | ||
<cmath>v=8</cmath> | <cmath>v=8</cmath> | ||
− | By | + | By Ptolemy’s Theorem, |
<cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath> | <cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath> | ||
<cmath>8 \cdot 3+5 \cdot 3=7BD</cmath> | <cmath>8 \cdot 3+5 \cdot 3=7BD</cmath> | ||
<cmath>BD=\frac{39}{7}</cmath> | <cmath>BD=\frac{39}{7}</cmath> | ||
Since <math>\frac{39}{7}<5</math> | Since <math>\frac{39}{7}<5</math> | ||
− | The answer is <math>\ | + | The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>. |
+ | |||
+ | ~formatting by eevee9406 | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC12 box|year=2024|ab=A|num-b=18|num-a=20}} | ||
+ | {{MAA Notice}} |
Revision as of 18:07, 8 November 2024
Problem
Cyclic quadrilateral has lengths and with . What is the length of the shorter diagonal of ?
Solution 1
First, by properties of cyclic quadrilaterals. Let . We apply the Law of Cosines on : Let . Apply the Law of Cosines on : By Ptolemy’s Theorem, Since The answer is .
~formatting by eevee9406
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.