Difference between revisions of "2024 AMC 10A Problems/Problem 1"

(Solution 2 (Distributive Property))
(Solution 2 (Distributive Property))
Line 20: Line 20:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
== Solution 3 (Quickest Way) ==
 +
 +
We simply look at the units digit of the problem we have(or take mod 10)
 +
<cmath>9901\cdot101-99\cdot10101 \equiv 1*1 - 9*1 = 2 \mod{10}.</cmath>
 +
Since the only answer with 2 in the units digit is <math>\boxed{\textbf{(A)}}</math> we are done!
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=A|before=First Problem|num-a=2}}
 
{{AMC10 box|year=2024|ab=A|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:27, 8 November 2024

Problem

What is the value of \[9901\cdot101-99\cdot10101?\]

$\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020$

Solution 1 (Direct Computation)

The likely fastest method will be direct computation. $9901\cdot101$ evaluates to $1000001$ and $99\cdot10101$ evaluates to $999999$. The difference is $\boxed{\textbf{(A) }2}.$

Solution by juwushu.

Solution 2 (Distributive Property)

We have \begin{align*} 9901\cdot101-99\cdot10101 &= (10000-99)\cdot101-99\cdot(10000+101) \\ &= 10000\cdot101-99\cdot101-99\cdot10000-99\cdot101 \\ &= (10000\cdot101-99\cdot10000)-2\cdot(99\cdot101) \\ &= 2\cdot10000-2\cdot9999 \\ &= \boxed{\textbf{(A) }2}. \end{align*} ~MRENTHUSIASM

Solution 3 (Quickest Way)

We simply look at the units digit of the problem we have(or take mod 10) \[9901\cdot101-99\cdot10101 \equiv 1*1 - 9*1 = 2 \mod{10}.\] Since the only answer with 2 in the units digit is $\boxed{\textbf{(A)}}$ we are done!

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png