Difference between revisions of "1998 AHSME Problems/Problem 26"
(solutions, {{image}} needed) |
(→Solution 1: + <asy> image.) |
||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
− | Let the extensions of <math>\overline{DA}</math> and <math>\overline{CB}</math> be at <math>E</math>. Since <math>\angle BAD = 120^{\circ}</math>, <math>\angle BAE = 60^{\circ}</math> and <math>\triangle ABE</math> is a <tt>30-60-90</tt> triangle. Also, <math>\triangle ABE \ | + | Let the extensions of <math>\overline{DA}</math> and <math>\overline{CB}</math> be at <math>E</math>. Since <math>\angle BAD = 120^{\circ}</math>, <math>\angle BAE = 60^{\circ}</math> and <math>\triangle ABE</math> is a <tt>30-60-90</tt> triangle. Also, <math>\triangle ABE \sim \triangle CDE</math>, so <math>\triangle CDE</math> is also a <tt>30-60-90</tt> triangle. |
− | { | + | <center><asy> |
+ | size(200); | ||
+ | defaultpen(0.8); | ||
+ | pair D=(0,0), C=(0,24*3^0.5), A=(46,0), E=(72,0), B=(46+13/2,13*3^.5/2); | ||
+ | pair P=(C+D)/2, Q=(D+A)/2, R=(A+E)/2, T=(A+B)/2; | ||
+ | draw(D--A--B--C--cycle); | ||
+ | draw(C--A); | ||
+ | draw(A--E--B,dashed); | ||
+ | label("\(A\)",A,SSW); | ||
+ | label("\(B\)",B,NNE); | ||
+ | label("\(C\)",C,WNW); | ||
+ | label("\(D\)",D,SSW); | ||
+ | label("\(E\)",E,SSE); | ||
+ | label("24<math>\sqrt{3}</math>",P,W); | ||
+ | label("46",Q,S); | ||
+ | label("26",R,S); | ||
+ | label("13",T,WNW); | ||
+ | </asy></center> | ||
− | Thus <math>AE = 2AB = 26</math>, and <math>CD = \frac{26 + 46}{\sqrt{3}} = 24\sqrt{3}</math>. By the [[Pythagorean Theorem]] on <math>\triangle ACD</math>, < | + | |
+ | Thus <math>AE = 2AB = 26</math>, and <math>CD = \frac{26 + 46}{\sqrt{3}} = 24\sqrt{3}</math>. By the [[Pythagorean Theorem]] on <math>\triangle ACD</math>, <cmath>AC = \sqrt{(46)^2 + (24\sqrt{3})^2} = 62 \Rightarrow \mathrm{(B)}.</cmath> | ||
=== Solution 2 === | === Solution 2 === |
Revision as of 20:41, 9 February 2008
Problem
In quadrilateral , it is given that , angles and are right angles, , and . Then
Solution
Solution 1
Let the extensions of and be at . Since , and is a 30-60-90 triangle. Also, , so is also a 30-60-90 triangle.
size(200); defaultpen(0.8); pair D=(0,0), C=(0,24*3^0.5), A=(46,0), E=(72,0), B=(46+13/2,13*3^.5/2); pair P=(C+D)/2, Q=(D+A)/2, R=(A+E)/2, T=(A+B)/2; draw(D--A--B--C--cycle); draw(C--A); draw(A--E--B,dashed); label("\(A\)",A,SSW); label("\(B\)",B,NNE); label("\(C\)",C,WNW); label("\(D\)",D,SSW); label("\(E\)",E,SSE); label("24<math>\sqrt{3}</math>",P,W); label("46",Q,S); label("26",R,S); label("13",T,WNW); (Error making remote request. Unknown error_msg)
Thus , and . By the Pythagorean Theorem on ,
Solution 2
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Opposite angles add up to , so is a cyclic quadrilateral. Also, , from which it follows that is a diameter of the circumscribing circle. We can apply the extended version of the Law of Sines on :
By the Law of Cosines on :
So .
See also
1998 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 25 |
Followed by Problem 27 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |