Difference between revisions of "2017 IMO Problems/Problem 3"
Archieguan (talk | contribs) m (→Solution) |
Archieguan (talk | contribs) m (→Solution) |
||
Line 26: | Line 26: | ||
The rabbit’s plan is to simply choose one of the points <math>Y_1</math> or <math>Y_2</math> and hop <math>200</math> rounds straight towards it. Since all hops stay within <math>1</math> distance unit from <math>r</math>, it is possible that all radar pings stay on <math>r</math>. In particular, in this case, the hunter has no way of determining whether the rabbit is heading for <math>Y_1</math> or <math>Y_2</math>. | The rabbit’s plan is to simply choose one of the points <math>Y_1</math> or <math>Y_2</math> and hop <math>200</math> rounds straight towards it. Since all hops stay within <math>1</math> distance unit from <math>r</math>, it is possible that all radar pings stay on <math>r</math>. In particular, in this case, the hunter has no way of determining whether the rabbit is heading for <math>Y_1</math> or <math>Y_2</math>. | ||
− | Looking at these pings, what can the hunter do? His best strategy is to go 200 rounds straight to the right, ending up at point <math>H’</math> in the figure because the hunter will always be to the left of <math>H’</math> after the <math>200</math> rounds, and if the hunter is above <math>r</math>, then he will be further away from <math>Y_2</math>, and if he is below <math>r</math>, then he will be further away from <math>Y_1</math>. In short, he can never be sure that the distance from him and the rabbit will be less than <math>y = H’Y_1 = H’Y_2</math> after these <math>200</math> rounds. | + | Looking at these pings, what can the hunter do? His best strategy is to go <math>200</math> rounds straight to the right, ending up at point <math>H’</math> in the figure because the hunter will always be to the left of <math>H’</math> after the <math>200</math> rounds, and if the hunter is above <math>r</math>, then he will be further away from <math>Y_2</math>, and if he is below <math>r</math>, then he will be further away from <math>Y_1</math>. In short, he can never be sure that the distance from him and the rabbit will be less than <math>y = H’Y_1 = H’Y_2</math> after these <math>200</math> rounds. |
To estimate <math>y^2</math>, we take <math>Z</math> as the midpoint of segment <math>Y_1Y_2</math>, we take <math>R’</math> as a point <math>200</math> units to the right of <math>R_n</math>, and define <math>\epsilon = ZR’</math> (Note that <math>H’R’ = d_n</math>). Then | To estimate <math>y^2</math>, we take <math>Z</math> as the midpoint of segment <math>Y_1Y_2</math>, we take <math>R’</math> as a point <math>200</math> units to the right of <math>R_n</math>, and define <math>\epsilon = ZR’</math> (Note that <math>H’R’ = d_n</math>). Then | ||
<cmath> y^2 = 1 + (H’Z)^2 = 1+(d_n-\epsilon)^2</cmath> | <cmath> y^2 = 1 + (H’Z)^2 = 1+(d_n-\epsilon)^2</cmath> |
Revision as of 20:23, 22 October 2024
Problem
A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit's starting point, , and the hunter's starting point,
, are the same. After
rounds of the game, the rabbit is at point
and the hunter is at point
. In the nth round of the game, three things occur in order.
(i) The rabbit moves invisibly to a point such that the distance between
and
is exactly 1.
(ii) A tracking device reports a point to the hunter. The only guarantee provided by the tracking device is that the distance between
and
is at most 1.
(iii) The hunter moves visibly to a point such that the distance between
and
is exactly 1.
Is it always possible, no matter how the rabbit moves, and no matter what points are reported by the tracking device, for the hunter to choose her moves so that after rounds she can ensure that the distance between her and the rabbit is at most 100?
Solution
Answer: No. There is no such strategy for the hunter. The rabbit will always “Win”
Proof:
Suppose the answer is Yes. Therefore, there exists a strategy for the hunter to always “win” no matter how the rabbit moved or how the radar pinged. We will show that with bad luck from radar pings, the hunter cannot guarantee that the distance stays below after
moves.
Let be the distance be the distance between the hunter and the rabbit after
rounds.
If
the rabbit has won as all it needs to do is to move straight away from the hunter and the distance between the two will be kept at or above
thereon.
Now we tackle the other case,
. We will show that whatever strategy the hunter follows, after
rounds, the rabbit can increase
by at least
with lucky radar pings. This way,
will reach
in less than
rounds, in which the rabbit wins.
Suppose the hunter is at
and the rabbit is at
. Suppose the rabbit
its location (this allow us to ignore all information from previous radar pings).
Let
be the line
and let
and
be points which are
unit away from
and
units away from
, as in the figure below.
The rabbit’s plan is to simply choose one of the points or
and hop
rounds straight towards it. Since all hops stay within
distance unit from
, it is possible that all radar pings stay on
. In particular, in this case, the hunter has no way of determining whether the rabbit is heading for
or
.
Looking at these pings, what can the hunter do? His best strategy is to go rounds straight to the right, ending up at point
in the figure because the hunter will always be to the left of
after the
rounds, and if the hunter is above
, then he will be further away from
, and if he is below
, then he will be further away from
. In short, he can never be sure that the distance from him and the rabbit will be less than
after these
rounds.
To estimate
, we take
as the midpoint of segment
, we take
as a point
units to the right of
, and define
(Note that
). Then
Where
.
In particular,
, so
Since
and we assumed
, this shows that
. So ,as we claimed, with this list of radar pings, no matter what the hunter does, the rabbit might achieve
The rabbit wins.
~Archieguan
See Also
2017 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |