Difference between revisions of "2003 AMC 12B Problems/Problem 22"
(sol, img needed) |
(asy) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let <math>ABCD</math> be a [[rhombus]] with <math>AC = 16</math> and <math>BD = 30</math>. Let <math>N</math> be a point on <math>\overline{AB}</math>, and let <math>P</math> and <math>Q</math> be the feet of the perpendiculars from <math>N</math> to <math>\overline{AC}</math> and <math>\overline{BD}</math>, respectively. Which of the following is closest to the minimum possible value of <math>PQ</math>? | Let <math>ABCD</math> be a [[rhombus]] with <math>AC = 16</math> and <math>BD = 30</math>. Let <math>N</math> be a point on <math>\overline{AB}</math>, and let <math>P</math> and <math>Q</math> be the feet of the perpendiculars from <math>N</math> to <math>\overline{AC}</math> and <math>\overline{BD}</math>, respectively. Which of the following is closest to the minimum possible value of <math>PQ</math>? | ||
+ | |||
+ | <center><asy> | ||
+ | size(200); | ||
+ | defaultpen(0.6); | ||
+ | pair O = (15*15/17,8*15/17), C = (17,0), D = (0,0), P = (25.6,19.2), Q = (25.6, 18.5); | ||
+ | pair A = 2*O-C, B = 2*O-D; | ||
+ | pair P = (A+O)/2, Q=(B+O)/2, N=(A+B)/2; | ||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(A--O--B--O--C--O--D); | ||
+ | draw(P--N--Q); | ||
+ | label("\(A\)",A,WNW); | ||
+ | label("\(B\)",B,ESE); | ||
+ | label("\(C\)",C,ESE); | ||
+ | label("\(D\)",D,SW); | ||
+ | label("\(P\)",P,SSW); | ||
+ | label("\(Q\)",Q,SSE); | ||
+ | label("\(N\)",N,NNE); | ||
+ | </asy></center> | ||
<math>\mathrm{(A)}\ 6.5 | <math>\mathrm{(A)}\ 6.5 | ||
Line 7: | Line 25: | ||
\qquad\mathrm{(D)}\ 7.25 | \qquad\mathrm{(D)}\ 7.25 | ||
\qquad\mathrm{(E)}\ 7.5</math> | \qquad\mathrm{(E)}\ 7.5</math> | ||
− | |||
− | |||
== Solution == | == Solution == | ||
Let <math>\overline{AC}</math> and <math>\overline{BD}</math> intersect at <math>O</math>. Since <math>ABCD</math> is a rhombus, then <math>\overline{AC}</math> and <math>\overline{BD}</math> are [[perpendicular]] [[bisector]]s. Thus <math>\angle POQ = 90^{\circ}</math>, so <math>OPNQ</math> is a [[rectangle]]. Since the diagonals of a rectangle are of equal length, <math>PQ = ON</math>, so we want to minimize <math>ON</math>. It follows that we want <math>ON \perp AB</math>. | Let <math>\overline{AC}</math> and <math>\overline{BD}</math> intersect at <math>O</math>. Since <math>ABCD</math> is a rhombus, then <math>\overline{AC}</math> and <math>\overline{BD}</math> are [[perpendicular]] [[bisector]]s. Thus <math>\angle POQ = 90^{\circ}</math>, so <math>OPNQ</math> is a [[rectangle]]. Since the diagonals of a rectangle are of equal length, <math>PQ = ON</math>, so we want to minimize <math>ON</math>. It follows that we want <math>ON \perp AB</math>. |
Revision as of 12:51, 3 February 2008
Problem
Let be a rhombus with and . Let be a point on , and let and be the feet of the perpendiculars from to and , respectively. Which of the following is closest to the minimum possible value of ?
Solution
Let and intersect at . Since is a rhombus, then and are perpendicular bisectors. Thus , so is a rectangle. Since the diagonals of a rectangle are of equal length, , so we want to minimize . It follows that we want .
Finding the area in two different ways,
See also
2003 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |