Difference between revisions of "2024 AMC 10B Problems/Problem 13"

m (Protected "2024 AMC 10B Problems/Problem 13" ([Edit=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 14 November 2024 (UTC))))
Line 1: Line 1:
 +
==Problem==
 +
Positive integers <math>x</math> and <math>y</math> satisfy the equation <math>\sqrtx + \sqrty = \sqrt{1183}</math>. What is the minimum possible value of <math>x+y</math>.
  
 +
<math>\textbf{(A) } 585 \qquad\textbf{(B) } 595 \qquad\textbf{(C) } 623 \qquad\textbf{(D) } 700 \qquad\textbf{(E) } 791</math>
 +
 +
==Solution 1==
 +
(Not yet conclusive plz add more stuff)
 +
<math>\sqrt{1183} = 13 \sqrt7 = 6\sqrt7 + 7\sqrt7 = \sqrt{252} + \sqrt{343}</math>. <math>252 + 343 = \boxed{\textbf{(B) }595}</math>
 +
 +
==See also==
 +
{{AMC10 box|year=2024|ab=B|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 01:02, 14 November 2024

Problem

Positive integers $x$ and $y$ satisfy the equation $\sqrtx + \sqrty = \sqrt{1183}$ (Error compiling LaTeX. Unknown error_msg). What is the minimum possible value of $x+y$.

$\textbf{(A) } 585 \qquad\textbf{(B) } 595 \qquad\textbf{(C) } 623 \qquad\textbf{(D) } 700 \qquad\textbf{(E) } 791$

Solution 1

(Not yet conclusive plz add more stuff) $\sqrt{1183} = 13 \sqrt7 = 6\sqrt7 + 7\sqrt7 = \sqrt{252} + \sqrt{343}$. $252 + 343 = \boxed{\textbf{(B) }595}$

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png