Difference between revisions of "2024 AMC 10A Problems/Problem 5"

m (Protected "2024 AMC 10A Problems/Problem 5" ([Edit=Allow only administrators] (expires 04:59, 8 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 8 November 2024 (UTC))) [cascading])
Line 1: Line 1:
 +
== Problem ==
 +
What is the least value of <math>n</math> such that <math>n!</math> is a multiple of <math>2024</math>?
  
 +
<math>\textbf{(A) } 11\qquad\textbf{(B) } 21\qquad\textbf{(C) } 22\qquad\textbf{(D) } 23\qquad\textbf{(E) } 253</math>
 +
 +
== Solution ==
 +
Note that <math>2024=2^3\cdot11\cdot23.</math> Since <math>23!</math> is a multiple of <math>2^3, 11,</math> and <math>23,</math> and <math>\gcd(2^3,11,23)=1,</math> we conclude that <math>23!</math> is a multiple of <math>2024.</math> Therefore, we have <math>n=\boxed{\textbf{(D) } 23}.</math>
 +
 +
~MRENTHUSIASM
 +
 +
==See also==
 +
{{AMC10 box|year=2024|ab=A|num-b=4|num-a=5}}
 +
{{MAA Notice}}

Revision as of 15:42, 8 November 2024

Problem

What is the least value of $n$ such that $n!$ is a multiple of $2024$?

$\textbf{(A) } 11\qquad\textbf{(B) } 21\qquad\textbf{(C) } 22\qquad\textbf{(D) } 23\qquad\textbf{(E) } 253$

Solution

Note that $2024=2^3\cdot11\cdot23.$ Since $23!$ is a multiple of $2^3, 11,$ and $23,$ and $\gcd(2^3,11,23)=1,$ we conclude that $23!$ is a multiple of $2024.$ Therefore, we have $n=\boxed{\textbf{(D) } 23}.$

~MRENTHUSIASM

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png