Difference between revisions of "2024 AMC 10A Problems/Problem 1"

m (Protected "2024 AMC 10A Problems/Problem 1" ([Edit=Allow only administrators] (expires 04:59, 8 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 8 November 2024 (UTC))) [cascading])
Line 1: Line 1:
 +
== Problem ==
  
 +
What is the value of <math>9901\cdot101-99\cdot10101?</math>
 +
 +
<math>\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020</math>
 +
 +
== Solution 1 ==
 +
The likely fastest method will be straight computation. <math>9901\cdot101</math> evaluates to <math>1000001</math> and <math>99\cdot10101</math> evaluates to <math>999999</math>. The difference is \boxed{\textbf{(A) }2}

Revision as of 15:11, 8 November 2024

Problem

What is the value of $9901\cdot101-99\cdot10101?$

$\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020$

Solution 1

The likely fastest method will be straight computation. $9901\cdot101$ evaluates to $1000001$ and $99\cdot10101$ evaluates to $999999$. The difference is \boxed{\textbf{(A) }2}