Difference between revisions of "2002 AMC 12B Problems/Problem 3"

m (s)
 
Line 1: Line 1:
 +
{{duplicate|[[2002 AMC 12B Problems|2002 AMC 12B #3]] and [[2002 AMC 10B Problems|2002 AMC 10B #6]]}}
 
== Problem ==
 
== Problem ==
 
For how many positive integers <math>n</math> is <math>n^2 - 3n + 2</math> a [[prime]] number?
 
For how many positive integers <math>n</math> is <math>n^2 - 3n + 2</math> a [[prime]] number?
Line 8: Line 9:
 
\qquad\mathrm{(E)}\ \text{infinitely\ many}</math>
 
\qquad\mathrm{(E)}\ \text{infinitely\ many}</math>
 
== Solution ==
 
== Solution ==
<math>n^2 - 3n + 2 = (n-2)(n-1)</math>, which is the product of two integers greater than <math>1</math> if <math>n \ge 4</math>. When <math>n = 1,2</math>, the expression evaluates to <math>0</math>; when <math>n = 3</math> it evaluates to be <math>2</math>, a prime number. The answer is <math>1\ \mathrm{(B)}</math>.
+
Factoring, we get <math>n^2 - 3n + 2 = (n-2)(n-1)</math>. Exactly <math>1</math> of <math>n-2</math> and <math>n-1</math> must be <math>1</math> and the other a prime number. If <math>n-1=1</math>, then <math>n-2=0</math>, and <math>1\times0=0</math>, which is not prime. On the other hand, if <math>n-2=1</math>, then <math>n-1=2</math>, and <math>1\times2=2</math>, which is a prime number. The answer is <math>\boxed{\mathrm{(B)}\ \text{one}}</math>.
  
 
== See also ==
 
== See also ==
 +
{{AMC10 box|year=2002|ab=B|num-b=5|num-a=7}}
 
{{AMC12 box|year=2002|ab=B|num-b=2|num-a=4}}
 
{{AMC12 box|year=2002|ab=B|num-b=2|num-a=4}}
  
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Number Theory Problems]]

Revision as of 16:35, 28 July 2011

The following problem is from both the 2002 AMC 12B #3 and 2002 AMC 10B #6, so both problems redirect to this page.

Problem

For how many positive integers $n$ is $n^2 - 3n + 2$ a prime number?

$\mathrm{(A)}\ \text{none} \qquad\mathrm{(B)}\ \text{one} \qquad\mathrm{(C)}\ \text{two} \qquad\mathrm{(D)}\ \text{more\ than\ two,\ but\ finitely\ many} \qquad\mathrm{(E)}\ \text{infinitely\ many}$

Solution

Factoring, we get $n^2 - 3n + 2 = (n-2)(n-1)$. Exactly $1$ of $n-2$ and $n-1$ must be $1$ and the other a prime number. If $n-1=1$, then $n-2=0$, and $1\times0=0$, which is not prime. On the other hand, if $n-2=1$, then $n-1=2$, and $1\times2=2$, which is a prime number. The answer is $\boxed{\mathrm{(B)}\ \text{one}}$.

See also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions