Difference between revisions of "2019 AMC 12B Problems/Problem 25"
Szhangmath (talk | contribs) (→See Also) |
Szhangmath (talk | contribs) (→Solution 5) |
||
Line 88: | Line 88: | ||
/* dots and labels */ | /* dots and labels */ | ||
dot((0.,0.),dotstyle); | dot((0.,0.),dotstyle); | ||
− | label("$A$", (-0. | + | label("$A$", (-0.38,0.), NE * labelscalefactor); |
dot((4.,0.),dotstyle); | dot((4.,0.),dotstyle); | ||
− | label("$B$", (3. | + | label("$B$", (3.96,-0.38), NE * labelscalefactor); |
dot((2.,3.4641016151377544),dotstyle); | dot((2.,3.4641016151377544),dotstyle); | ||
label("$D$", (2.08,3.66), NE * labelscalefactor); | label("$D$", (2.08,3.66), NE * labelscalefactor); | ||
dot((5.,1.),dotstyle); | dot((5.,1.),dotstyle); | ||
− | label("$C$", (5. | + | label("$C$", (5.14,0.98), NE * labelscalefactor); |
dot((2.5,0.5),linewidth(4.pt) + dotstyle); | dot((2.5,0.5),linewidth(4.pt) + dotstyle); | ||
− | label("$E$", (2. | + | label("$E$", (2.2,0.5), NE * labelscalefactor); |
dot((4.5,0.5),linewidth(4.pt) + dotstyle); | dot((4.5,0.5),linewidth(4.pt) + dotstyle); | ||
− | label("$F$", (4. | + | label("$F$", (4.6,0.26), NE * labelscalefactor); |
dot((3.5,2.232050807568877),linewidth(4.pt) + dotstyle); | dot((3.5,2.232050807568877),linewidth(4.pt) + dotstyle); | ||
label("$G$", (3.58,2.4), NE * labelscalefactor); | label("$G$", (3.58,2.4), NE * labelscalefactor); | ||
dot((2.333333333333333,1.4880338717125845),linewidth(4.pt) + dotstyle); | dot((2.333333333333333,1.4880338717125845),linewidth(4.pt) + dotstyle); | ||
− | label("$Z$", ( | + | label("$Z$", (2.,1.44), NE * labelscalefactor); |
dot((3.,0.3333333333333333),linewidth(4.pt) + dotstyle); | dot((3.,0.3333333333333333),linewidth(4.pt) + dotstyle); | ||
− | label("$X$", (2.92, | + | label("$X$", (2.92,0.), NE * labelscalefactor); |
dot((3.666666666666666,1.488033871712585),linewidth(4.pt) + dotstyle); | dot((3.666666666666666,1.488033871712585),linewidth(4.pt) + dotstyle); | ||
− | label("$Y$", (3. | + | label("$Y$", (3.76,1.5), NE * labelscalefactor); |
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
</asy> | </asy> | ||
− | |||
− | |||
− | |||
− | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2019|ab=B|num-b=24|after=Last Problem}} | {{AMC12 box|year=2019|ab=B|num-b=24|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 11:54, 29 August 2024
Contents
Problem
Let be a convex quadrilateral with and Suppose that the centroids of and form the vertices of an equilateral triangle. What is the maximum possible value of the area of ?
Solution 1 (vectors)
Place an origin at , and assign position vectors of and . Since is not parallel to , vectors and are linearly independent, so we can write for some constants and . Now, recall that the centroid of a triangle has position vector .
Thus the centroid of is ; the centroid of is ; and the centroid of is .
Hence , , and . For to be equilateral, we need . Further, . Hence we have , so is equilateral.
Now let the side length of be , and let . By the Law of Cosines in , we have . Since is equilateral, its area is , while the area of is . Thus the total area of is , where in the last step we used the subtraction formula for . Alternatively, we can use calculus to find the local maximum. Observe that has maximum value when e.g. , which is a valid configuration, so the maximum area is .
Solution 2
Let , , be the centroids of , , and respectively, and let be the midpoint of . , , and are collinear due to well-known properties of the centroid. Likewise, , , and are collinear as well. Because (as is also well-known) and , we have . This implies that is parallel to , and in terms of lengths, . (SAS Similarity)
We can apply the same argument to the pair of triangles and , concluding that is parallel to and . Because (due to the triangle being equilateral), , and the pair of parallel lines preserve the angle, meaning . Therefore is equilateral.
At this point, we can finish as in Solution 1, or, to avoid using trigonometry, we can continue as follows:
Let , where due to the Triangle Inequality in . By breaking the quadrilateral into and , we can create an expression for the area of . We use the formula for the area of an equilateral triangle given its side length to find the area of and Heron's formula to find the area of .
After simplifying,
Substituting , the expression becomes
We can ignore the for now and focus on .
By the Cauchy-Schwarz inequality,
The RHS simplifies to , meaning the maximum value of is .
Thus the maximum possible area of is .
Solution 3 (Complex Numbers)
Let , , , and correspond to the complex numbers , , , and , respectively. Then, the complex representations of the centroids are , , and . The pairwise distances between the centroids are , , and , all equal. Thus, , so . Hence, is equilateral.
By the Law of Cosines, .
. Thus, the maximum possible area of is .
~ Leo.Euler
Solution 4 (Homothety)
Let , and be the centroids of , and , respectively, and let and be the midpoints of and , respectively. Note that and are of the way from to and , respectively, by a well-known property of centroids. Then a homothety centered at with ratio maps and to and , respectively, implying that is equilateral too. But is the medial triangle of , so is also equilateral. We may finish with the methods in the solutions above.
~ numberwhiz
Video Solution by MOP 2024
~r00tsOfUnity
Solution 5
See Also
2019 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.