Difference between revisions of "2024 AMC 10A Problems/Problem 1"

(Solution)
(Replaced content with "Prove the Riemann hypothesis.")
(Tag: Replaced)
Line 1: Line 1:
(problem statement left as an exercise to the reader)
+
Prove the Riemann hypothesis.
 
 
If <math>x+1=2</math>, what is <math>x</math>?
 
 
 
(a) <math>1</math>
 
 
 
(b) <math>\frac{1}{2} \int_{0}^{2} x \, dx</math>
 
 
 
(c) <math>\left[\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x\right]^{i\pi} + 2</math>
 
 
 
(d) <math>\sin^2 \theta + \cos^2 \theta</math>
 
 
 
(e) <math>\lim_{{x \to 0}} \frac{\sin x}{x}</math>
 

Revision as of 21:45, 19 August 2024

Prove the Riemann hypothesis.