Difference between revisions of "2017 AMC 12B Problems/Problem 24"
(→Solution 1) |
(→Solution 1) |
||
Line 17: | Line 17: | ||
(x^2+1)^2 &=20x^2 \\ | (x^2+1)^2 &=20x^2 \\ | ||
x^4-18x^2+1 &=0 \implies x^2=9+4\sqrt{5}=4+2(2\sqrt{5})+5 \\ | x^4-18x^2+1 &=0 \implies x^2=9+4\sqrt{5}=4+2(2\sqrt{5})+5 \\ | ||
+ | \end{align*} | ||
Therefore, the answer is <math>\boxed{\textbf{(D) } 2+\sqrt{5}}</math> | Therefore, the answer is <math>\boxed{\textbf{(D) } 2+\sqrt{5}}</math> |
Revision as of 01:52, 31 July 2024
Contents
Problem
Quadrilateral has right angles at and , , and . There is a point in the interior of such that and the area of is times the area of . What is ?
Solution 1
Let , , and . Note that . By the Pythagorean Theorem, . Since , the ratios of side lengths must be equal. Since , and . Let F be a point on such that is an altitude of triangle . Note that . Therefore, and . Since and form altitudes of triangles and , respectively, the areas of these triangles can be calculated. Additionally, the area of triangle can be calculated, as it is a right triangle. Solving for each of these yields:
\begin{align*} [BEC] &=[CED]=[BEA]=(x^3)/(2(x^2+1)) \\ [ABCD] &=[AED]+[DEC]+[CEB]+[BEA] \\ (AB+CD)(BC)/2 &= 17*[CEB]+ [CEB] + [CEB] + [CEB] \\ (x^3+x)/2 &=(20x^3)/(2(x^2+1)) \\ (x)(x^2+1) &=20x^3/(x^2+1) \\ (x^2+1)^2 &=20x^2 \\ x^4-18x^2+1 &=0 \implies x^2=9+4\sqrt{5}=4+2(2\sqrt{5})+5 \\ \end{align*}
Therefore, the answer is
Solution 2
Draw line through , with on and on , . WLOG let , , . By weighted average .
Meanwhile, . This follows from comparing the ratios of triangle DEG to CFE and triangle AEG to FEB, both pairs in which the two triangles share a height perpendicular to FG, and have base ratio .
. We obtain , namely .
The rest is the same as Solution 1.
Solution 3
Let , ,
Note that cannot be the intersection of and , as that would mean
Let ,
Solution 4
Let . Then from the similar triangles condition, we compute and . Hence, the -coordinate of is just . Since lies on the unit circle, we can compute the coordinate as . By Shoelace, we want Factoring out denominators and expanding by minors, this is equivalent to This factors as , so and so the answer is .
Solution 5
Let where . Because . Notice that the diagonals are perpendicular with slopes of and . Let the intersection of and be , then . However, because is a trapezoid, and share the same area, therefore is the reflection of over the perpendicular bisector of , which is . We use the linear equations of the diagonals, , to find the coordinates of . The y-coordinate of is simply The area of is . We apply shoelace theorem to solve for the area of . The coordinates of the triangle are , so the area is
Finally, we use the property that the ratio of areas equals
~Zeric
Video Solution by MOP 2024
~r00tsOfUnity
Notes
1) is the most relevant answer choice because it shares numbers with the givens of the problem.
2) It's a very good guess to replace finding the area of triangle AED with the area of the triangle DAF, where F is the projection of D onto AB(then find the closest answer choice).
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.