Difference between revisions of "2017 AMC 8 Problems/Problem 22"
(→Solution 2) |
(→Solution 5 (Pythagorean Theorem)) |
||
Line 14: | Line 14: | ||
<math>\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{13}{5}\qquad\textbf{(C) }\frac{59}{18}\qquad\textbf{(D) }\frac{10}{3}\qquad\textbf{(E) }\frac{60}{13}</math> | <math>\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{13}{5}\qquad\textbf{(C) }\frac{59}{18}\qquad\textbf{(D) }\frac{10}{3}\qquad\textbf{(E) }\frac{60}{13}</math> | ||
− | ==Solution | + | ==Solution 1 (Pythagorean Theorem)== |
We can draw another radius from the center to the point of tangency. This angle, <math>\angle{ODB}</math>, is <math>90^\circ</math>. Label the center <math>O</math>, the point of tangency <math>D</math>, and the radius <math>r</math>. | We can draw another radius from the center to the point of tangency. This angle, <math>\angle{ODB}</math>, is <math>90^\circ</math>. Label the center <math>O</math>, the point of tangency <math>D</math>, and the radius <math>r</math>. | ||
<asy> | <asy> |
Revision as of 09:51, 24 July 2024
Contents
Problem
In the right triangle , , , and angle is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle?
Solution 1 (Pythagorean Theorem)
We can draw another radius from the center to the point of tangency. This angle, , is . Label the center , the point of tangency , and the radius .
Since is a kite, then . Also, . By the Pythagorean Theorem, . Solving, .
~MrThinker
Video Solution (CREATIVE THINKING + ANALYSIS!!!)
~Education, the Study of Everything
Video Solutions
- savannahsolver
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.