Difference between revisions of "Derangement"

m
Line 1: Line 1:
 
A '''derangement''' is a [[permutation]] with no [[fixed point]]s.  That is, a derangement of a [[set]] leaves no [[element]] in its original place.  For example, the derangements of <math>\{1,2,3\}</math> are <math>\{2, 3, 1\}</math> and <math>\{3, 1, 2\}</math>, but <math>\{3,2, 1\}</math> is not a derangement of <math>\{1,2,3\}</math> because 2 is a fixed point.
 
A '''derangement''' is a [[permutation]] with no [[fixed point]]s.  That is, a derangement of a [[set]] leaves no [[element]] in its original place.  For example, the derangements of <math>\{1,2,3\}</math> are <math>\{2, 3, 1\}</math> and <math>\{3, 1, 2\}</math>, but <math>\{3,2, 1\}</math> is not a derangement of <math>\{1,2,3\}</math> because 2 is a fixed point.
  
==Notation==
+
==Notation and formula==
The number of derangements of an <math>n</math>-element set is called the <math>n</math>th derangement number or the ''subfactorial'' of <math>n</math> and is sometimes denoted <math>!n</math> or <math>D_n</math>.  (Note that using this notation may require some care, as <math>a!b</math> can potentially mean both <math>(a!)b</math> and <math>a(!b)</math>.)  This number satisfies the recurrences
+
The number of derangements of an <math>n</math>-element set is called the <math>n</math>th derangement number or ''rencontres number'', or the ''subfactorial'' of <math>n</math> and is sometimes denoted <math>!n</math> or <math>D_n</math>.  (Note that using this notation may require some care, as <math>a!b</math> can potentially mean both <math>(a!)b</math> and <math>a(!b)</math>.)  This number satisfies the recurrences
  
 
<cmath>
 
<cmath>
Line 18: Line 18:
 
<cmath>!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.</cmath>
 
<cmath>!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.</cmath>
  
Thus, the number derangements of a 3-element set is <math>3! \cdot \sum_{k = 0}^3 \frac{(-1)^k}{k!} = 6\cdot\left(\frac{1}{1} - \frac{1}{1} + \frac{1}{2} - \frac{1}{6}\right) = 2</math>, which we know to be correct.
+
For example, the number derangements of a 3-element set is <math>3! \cdot \sum_{k = 0}^3 \frac{(-1)^k}{k!} = 6\cdot\left(\frac{1}{1} - \frac{1}{1} + \frac{1}{2} - \frac{1}{6}\right) = 2</math>, which we know to be correct.
 +
 
 +
The first few derangements, starting from <math>n=0</math>, are <math>1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, \ldots.</math>
 +
 
 +
==Limit as n approaches ∞==
 +
 
 +
From the recurrence <math>!n=n\cdot!(n-1)+(-1)^{n}</math>, we can find that <math>\lim_{n\to\infty}\frac{!n}{n!} =\frac{1}{e} \approx 0.3679\ldots.</math>
 +
 
 +
Also, <math>!n = \left\lfloor\frac{n!}{e}+\frac{1}{2}\right\rfloor.</math>
  
 
==Problems==
 
==Problems==

Revision as of 16:15, 13 February 2009

A derangement is a permutation with no fixed points. That is, a derangement of a set leaves no element in its original place. For example, the derangements of $\{1,2,3\}$ are $\{2, 3, 1\}$ and $\{3, 1, 2\}$, but $\{3,2, 1\}$ is not a derangement of $\{1,2,3\}$ because 2 is a fixed point.

Notation and formula

The number of derangements of an $n$-element set is called the $n$th derangement number or rencontres number, or the subfactorial of $n$ and is sometimes denoted $!n$ or $D_n$. (Note that using this notation may require some care, as $a!b$ can potentially mean both $(a!)b$ and $a(!b)$.) This number satisfies the recurrences

\[!n = n \cdot !(n - 1) + (-1)^n\]

and

\[!n = (n - 1)\cdot (!(n - 1) + !(n - 2))\]

and is given by the formula

\[!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.\]

For example, the number derangements of a 3-element set is $3! \cdot \sum_{k = 0}^3 \frac{(-1)^k}{k!} = 6\cdot\left(\frac{1}{1} - \frac{1}{1} + \frac{1}{2} - \frac{1}{6}\right) = 2$, which we know to be correct.

The first few derangements, starting from $n=0$, are $1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, \ldots.$

Limit as n approaches ∞

From the recurrence $!n=n\cdot!(n-1)+(-1)^{n}$, we can find that $\lim_{n\to\infty}\frac{!n}{n!} =\frac{1}{e} \approx 0.3679\ldots.$

Also, $!n = \left\lfloor\frac{n!}{e}+\frac{1}{2}\right\rfloor.$

Problems

Introductory

See also

This article is a stub. Help us out by expanding it.