Difference between revisions of "2002 AMC 10P Problems/Problem 12"

(Created page with "== Solution 1== == See also == {{AMC10 box|year=2002|ab=P|num-b=11|num-a=13}} {{MAA Notice}}")
 
Line 1: Line 1:
 +
== Problem 12 ==
 +
 +
For <math>f_n(x)=x^n</math> and <math>a \neq 1</math> consider
 +
 +
<math>\text{I. } (f_{11}(a)f_{13}(a))^{14}</math>
 +
 +
<math>\text{II. } f_{11}(a)f_{13}(a)f_{14}(a)</math>
 +
 +
<math>\text{III. } (f_{11}(f_{13}(a)))^{14}</math>
 +
 +
<math>\text{IV. } f_{11}(f_{13}(f_{14}(a)))</math>
 +
 +
Which of these equal <math>f_{2002}(a)?</math>
 +
 +
<math>
 +
\text{(A) I and II only}
 +
\qquad
 +
\text{(B) II and III only}
 +
\qquad
 +
\text{(C) III and IV only}
 +
\qquad
 +
\text{(D) II, III, and IV only}
 +
\qquad
 +
\text{(E) all of them}
 +
</math>
 +
 +
 
== Solution 1==
 
== Solution 1==
  

Revision as of 17:46, 14 July 2024

Problem 12

For $f_n(x)=x^n$ and $a \neq 1$ consider

$\text{I. } (f_{11}(a)f_{13}(a))^{14}$

$\text{II. } f_{11}(a)f_{13}(a)f_{14}(a)$

$\text{III. } (f_{11}(f_{13}(a)))^{14}$

$\text{IV. } f_{11}(f_{13}(f_{14}(a)))$

Which of these equal $f_{2002}(a)?$

$\text{(A) I and II only} \qquad \text{(B) II and III only} \qquad \text{(C) III and IV only} \qquad \text{(D) II, III, and IV only} \qquad \text{(E) all of them}$


Solution 1

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png