Difference between revisions of "2002 AMC 10P Problems/Problem 8"

(Created page with "== Solution 1== == See also == {{AMC10 box|year=2002|ab=P|num-b=7|num-a=9}} {{MAA Notice}}")
 
Line 1: Line 1:
 +
== Problem 8 ==
 +
 +
How many ordered triples of positive integers <math>(x,y,z)</math> satisfy <math>(x^y)^z=64?</math>
 +
 +
<math>
 +
\text{(A) }5
 +
\qquad
 +
\text{(B) }6
 +
\qquad
 +
\text{(C) }7
 +
\qquad
 +
\text{(D) }8
 +
\qquad
 +
\text{(E) }9
 +
</math>
 +
 
== Solution 1==
 
== Solution 1==
  

Revision as of 17:42, 14 July 2024

Problem 8

How many ordered triples of positive integers $(x,y,z)$ satisfy $(x^y)^z=64?$

$\text{(A) }5 \qquad \text{(B) }6 \qquad \text{(C) }7 \qquad \text{(D) }8 \qquad \text{(E) }9$

Solution 1

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png