Difference between revisions of "Bisector"
(→Proportions for bisectors) |
(→Seven lines crossing point) |
||
Line 158: | Line 158: | ||
1. Denote <math>AB = c, BC = a, AC = b, \angle BAC = 2 \alpha, \angle ABC = 2 \beta, \angle ACB = 2 \gamma.</math> | 1. Denote <math>AB = c, BC = a, AC = b, \angle BAC = 2 \alpha, \angle ABC = 2 \beta, \angle ACB = 2 \gamma.</math> | ||
<math>\overset{\Large\frown} {AB'} = \overset{\Large\frown} {CB'} \implies \angle AC'B' = \angle CC'B'.</math> | <math>\overset{\Large\frown} {AB'} = \overset{\Large\frown} {CB'} \implies \angle AC'B' = \angle CC'B'.</math> | ||
+ | Similarly <math>\angle AB'C' = \angle BB'C', \angle C'AI = \angle C'IA = \alpha + \gamma \implies B'C'</math> is the bisector of <math>AI.</math> | ||
+ | Similarly, <math>A'C'</math> is the bisector of <math>BI, A'B'</math> is the bisector of <math>CI.</math> | ||
+ | |||
+ | Therefore <math>AA_0IA_1, BB_0IB_1, CC_0IC_1</math> are rhombus. | ||
+ | |||
+ | So triples of points <math>A_0,I,C_1, B_0,I,A_1, C_0,I,B_1</math> are collinear, lines <math>A_0I || AC, B_0I || AB, C_0I || AC.</math> | ||
+ | <cmath>\triangle ABC \sim \triangle A_0IB_1 \sim \triangle IB_0C_1 \sim \triangle A_1IC_0.</cmath> | ||
+ | It is known that <math>\frac {AI}{IA''} = \frac {b+c}{a}, \frac {BI}{IB''} = \frac {a+c}{b} \implies BB_1 : B_1A_0 : A_0A = a : c : b.</math> | ||
+ | |||
+ | Similarly, <math>BB_0 : B_0C_1 : C_1C = c : a : b.</math> | ||
+ | |||
+ | <math>IC</math> is the bisector <math>\angle A_0IB_1 \implies \frac {A_0C''}{B_1C''} = \frac {AC}{BC} = \frac {b}{a} \implies BB_1 : B_1C'' : C''A_0 : A_0A = a(a + b) : ac : bc : b(a + b).</math> | ||
+ | |||
+ | Similarly, <math>BB_0 : B_0A'' : A''C_1 : C_1C = c(c + b) : ac : ab : b(c + b).</math> | ||
+ | |||
+ | Denote <math>D</math> the crosspoint of the tangent to the circumcircle of <math>\triangle ABC</math> at <math>B</math> and <math>A_0I.</math> | ||
+ | |||
+ | <math>\angle DBI = \angle BCB' = \angle BCA + 2 \overset{\Large\frown} {AB'} = 2 \gamma + \beta = \angle B_1IA_0 + \angle B_1IB = \angle DIB \implies BD = ID.</math> | ||
+ | <math>A'C'</math> is the bisector <math>BI \implies D \in A'C'.</math> | ||
+ | |||
+ | 2. <math>\frac {BB_1} {B_1A_0} = \frac {a}{c}, \frac {B_0C_1} {BB_0} = \frac {a}{c}.</math> | ||
+ | |||
+ | We use Menelaus' Theorem for <math>\triangle BA_0C_1</math> and line <math>DB_1B_0</math> and get <math>\frac {DA_0} {DC_1} = \frac {c^2}{a^2}.</math> | ||
+ | <cmath>\frac {BC''}{C''A_0} = \frac {BB_1+B_1C''}{C''A_0} = \frac {a(a+b+c)}{bc}.</cmath> | ||
+ | <cmath>\frac {C_1A''}{BA''} = \frac {C_1A''}{BB_0+B_0A''} = \frac {ab}{c(a+b+c)} \implies \frac {BC''}{C''A_0} \cdot \frac {C_1A''}{BA''} = \frac {a^2}{c^2}.</cmath> | ||
+ | We use Menelaus' Theorem for <math>\triangle BA_0C_1</math> and get that points <math>A'',C'',</math> and <math>D</math> are collinear. |
Revision as of 05:28, 6 June 2024
Contents
Division of bisector
Let a triangle be given.
Let and be the bisectors of
he segments and meet at point Find
Solution
Similarly
Denote Bisector
Bisector vladimir.shelomovskii@gmail.com, vvsss
Bisectors and tangent
Let a triangle and it’s circumcircle be given.
Let segments and be the internal and external bisectors of The tangent to at meet at point Prove that
a)
b)
c)
Proof
a) is circumcenter
b)
c) vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors A
Bisector and circumcircle
Let a triangle be given. Let segments and be the bisectors of The lines and meet circumcircle at points respectively.
Find Prove that circumcenter of lies on
Solution
Incenter belong the bisector which is the median of isosceles
vladimir.shelomovskii@gmail.com, vvsss
Some properties of the angle bisectors
Let a triangle be given.
Let be the circumradius, circumcircle, circumcenter, inradius, incircle, and inradius of respectively.
Let segments and be the angle bisectors of lines and meet at and meet and at
Let be the point on tangent to at point such, that
Let bisector line meet at point and at point
Denote circumcenter of - the point where bisector meet circumcircle of
Prove:
c) lines and are concurrent at
Proof
WLOG, A few preliminary formulas: a)
b) is the circumcenter of
c) are collinear.
are collinear and so on. Using Cheva's theorem we get the result.
vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors
The bisectors and of a triangle ABC with meet at point
Prove
Proof
Denote the angles and are concyclic. The area of the is vladimir.shelomovskii@gmail.com, vvsss
Seven lines crossing point
Let be the incenter, circumcircle, and the midpoints of sides of a
Let be the bisectors of a
be the midpoint of
The points and be such points that
Denote points
Prove that the lines and the tangent to the circumcircle of at are concurrent.
Proof
1. Denote Similarly is the bisector of Similarly, is the bisector of is the bisector of
Therefore are rhombus.
So triples of points are collinear, lines It is known that
Similarly,
is the bisector
Similarly,
Denote the crosspoint of the tangent to the circumcircle of at and
is the bisector
2.
We use Menelaus' Theorem for and line and get We use Menelaus' Theorem for and get that points and are collinear.