Difference between revisions of "2016 AMC 8 Problems/Problem 19"
(→Solution 2) |
(→Solution 3) |
||
Line 12: | Line 12: | ||
Let <math>x</math> be the smallest number. The equation will become, <math>x+(x+2)+(x+4)+\cdots +(x+48)=10,000</math>. After you combine like terms, you get <math>25x+(50*12)=10,000</math> which turns into <math>10,000-600=25x</math>. <math>25x=9400</math>, so <math>x=376</math>. Then, you add <math>376+48 = \boxed{\textbf{(E)}\ 424}</math>. | Let <math>x</math> be the smallest number. The equation will become, <math>x+(x+2)+(x+4)+\cdots +(x+48)=10,000</math>. After you combine like terms, you get <math>25x+(50*12)=10,000</math> which turns into <math>10,000-600=25x</math>. <math>25x=9400</math>, so <math>x=376</math>. Then, you add <math>376+48 = \boxed{\textbf{(E)}\ 424}</math>. | ||
− | |||
~AfterglowBlaziken | ~AfterglowBlaziken | ||
− | |||
==Solution 4== | ==Solution 4== |
Revision as of 22:08, 17 May 2024
Contents
Problem
The sum of consecutive even integers is . What is the largest of these consecutive integers?
Solution 1
Let be the 13th consecutive even integer that's being added up. By doing this, we can see that the sum of all 25 even numbers will simplify to since . Now, . Remembering that this is the 13th integer, we wish to find the 25th, which is .
Solution 3
Let be the smallest number. The equation will become, . After you combine like terms, you get which turns into . , so . Then, you add .
~AfterglowBlaziken
Solution 4
Dividing the series by , we get that the sum of consecutive integers is . Let the middle number be we know that the sum is , so . Solving, . is the middle term of the original sequence, so the original last term is . So the answer is .
~vadava_lx
Video Solution (CREATIVE THINKING + ANALYSIS!!!)
~Education, the Study of Everything
Video Solution
~savannahsolver
See Also
2016 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.