Difference between revisions of "1971 Canadian MO Problems/Problem 6"
(→Solution 3) |
(→Solution 2) |
||
Line 8: | Line 8: | ||
=== Solution 2 === | === Solution 2 === | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== Solution 3 === | === Solution 3 === |
Revision as of 09:45, 12 June 2024
Problem
Show that, for all integers , is not a multiple of .
Solutions
Solution 1
Notice . For this expression to be equal to a multiple of 121, would have to equal a number in the form . Now we have the equation . Subtracting from both sides and then factoring out on the right hand side results in . Now we can say and . Solving the first equation results in . Plugging in in the second equation and solving for , . Since * is clearly not a multiple of 121, can never be a multiple of 121.
Solution 2
Solution 3
In order for to divide , must also divide .
Plugging in all numbers modulo :
or to make computations easier,
reveals that only satisfy the condition .
Plugging into shows that it is not divisible by .
Thus, there are no integers such that is divisible by .
~iamselfemployed
See Also
1971 Canadian MO (Problems) | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • | Followed by Problem 7 |