Difference between revisions of "2000 AMC 12 Problems/Problem 15"

(soln)
 
m (See also: copy paste correction)
Line 8: Line 8:
  
 
== See also ==
 
== See also ==
{{AMC12 box|year=2000|num-b=8|num-a=10}}
+
{{AMC12 box|year=2000|num-b=14|num-a=16}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 19:04, 4 January 2008

Problem

Let $f$ be a function for which $f(x/3) = x^2 + x + 1$. Find the sum of all values of $z$ for which $f(3z) = 7$.

$\text {(A)}\ -1/3 \qquad \text {(B)}\ -1/9 \qquad \text {(C)}\ 0 \qquad \text {(D)}\ 5/9 \qquad \text {(E)}\ 5/3$

Solution

Let $y = \frac{x}{3}$; then $f(y) = (3y)^2 + 3y + 1 = 9y^2 + 3y+1$. Thus $f(3z)-7=81z^2+9z-6=3(9z-2)(3z+1)=0$, and $z = \frac{-1}{3}, \frac{2}{9}$. These sum up to $\frac{-1}{9}\ \mathrm{(B)}$.

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions