Difference between revisions of "2024 USAMO Problems/Problem 1"
Jeffersonj (talk | contribs) (→See Also) |
Jeffersonj (talk | contribs) (→See Also) |
||
Line 22: | Line 22: | ||
==See Also== | ==See Also== | ||
− | {{USAMO newbox|year=2024| | + | {{USAMO newbox|year=2024|before=First Question|num-a=2}} |
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 09:54, 18 April 2024
Find all integers such that the following property holds: if we list the divisors of in increasing order as , then we have
Solution (Explanation of Video)
We can start by verifying that and work by listing out the factors of and . We can also see that does not work because the terms , and are consecutive factors of . Also, does not work because the terms , and appear consecutively in the factors of .
Note that if we have a prime number and an integer such that both and are factors of , then the condition cannot be satisfied.
If is odd, then is a factor of . Also, is a factor of . Since for all , we can use Bertrand's Postulate to show that there is at least one prime number such that . Since we have two consecutive factors of and a prime number between the smaller of these factors and , the condition will not be satisfied for all odd .
If is even, then is a factor of . Also, is a factor of . Since for all , we can use Bertrand's Postulate again to show that there is at least one prime number such that . Since we have two consecutive factors of and a prime number between the smaller of these factors and , the condition will not be satisfied for all even .
Therefore, the only numbers that work are and .
~alexanderruan
Video Solution
https://youtu.be/ZcdBpaLC5p0 [video contains problem 1 and problem 4]
See Also
2024 USAMO (Problems • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.