Difference between revisions of "2024 USAJMO Problems/Problem 1"
m (→Solution 3) |
m (→Solution 3) |
||
Line 129: | Line 129: | ||
Draw diameters (of length <math>AQ</math>) of circle <math>(ABCD)</math> through <math>Q</math> and <math>S</math>, with length <math>A</math>. Let <math>q</math> be the distance from <math>Q</math> to the circle along a diameter, and likewise <math>s</math> be distance from <math>S</math> to the circle. | Draw diameters (of length <math>AQ</math>) of circle <math>(ABCD)</math> through <math>Q</math> and <math>S</math>, with length <math>A</math>. Let <math>q</math> be the distance from <math>Q</math> to the circle along a diameter, and likewise <math>s</math> be distance from <math>S</math> to the circle. | ||
− | Then <math>q(AQ-q) = s(AQ-s) = 12</math> and <math>q,s < AQ/2</math> (radius). Therefore, <math>q=s</math> and <math> | + | Then <math>q(AQ-q) = s(AQ-s) = 12</math> and <math>q,s < AQ/2</math> (radius). Therefore, <math>q=s</math> and <math>AQ/2 -q = AQ/2 -s</math>. But <math>AQ-q=OQ</math>, <math>AQ-s=OS</math>, <math>OQ = OP</math> and <math>OS = OR</math> by symmetry around the perpendicular bisectors of <math>PQ</math> and <math>RS</math>, so <math>P,Q,R,S</math> are all equidistant from <math>O</math>, forming a circumcircle around <math>PQRS</math>. |
-BraveCobra22aops and oinava | -BraveCobra22aops and oinava |
Revision as of 16:22, 26 March 2024
Problem
Let be a cyclic quadrilateral with and . Points and are selected on segment such that . Points and are selected on segment such that . Prove that is a cyclic quadrilateral.
Solution 1
First, let and be the midpoints of and , respectively. It is clear that , , , and . Also, let be the circumcenter of .
By properties of cyclic quadrilaterals, we know that the circumcenter of a cyclic quadrilateral is the intersection of its sides' perpendicular bisectors. This implies that and . Since and are also bisectors of and , respectively, if is indeed a cyclic quadrilateral, then its circumcenter is also at . Thus, it suffices to show that .
Notice that , , and . By SAS congruency, . Similarly, we find that and . We now need only to show that these two pairs are equal to each other.
Draw the segments connecting to , , , and .
Also, let be the circumradius of . This means that . Recall that and . Notice the several right triangles in our figure.
Let us apply Pythagorean Theorem on . We can see that
Let us again apply Pythagorean Theorem on . We can see that
Let us apply Pythagorean Theorem on . We get .
We finally apply Pythagorean Theorem on . This becomes .
This is the same expression as we got for . Thus, , and recalling that and , we have shown that . We are done. QED
~Technodoggo
Solution 2
We can consider two cases: or The first case is trivial, as and we are done due to symmetry. For the second case, WLOG, assume that and are located on and respectively. Extend and to a point and by Power of a Point, we have which may be written as or We can translate this to so and therefore by the Converse of Power of a Point is cyclic, and we are done.
Solution 3
All 4 corners of have equal power of a point () with respect to the circle , with center .
Draw diameters (of length ) of circle through and , with length . Let be the distance from to the circle along a diameter, and likewise be distance from to the circle.
Then and (radius). Therefore, and . But , , and by symmetry around the perpendicular bisectors of and , so are all equidistant from , forming a circumcircle around .
-BraveCobra22aops and oinava
See Also
2024 USAJMO (Problems • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.