Difference between revisions of "1984 AIME Problems/Problem 13"
m (cleanup) |
(→Solution 1) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
− | We know that <math>\tan(\arctan(x)) = x</math> so we can repeatedly apply the addition formula, <math>\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}</math>. Let <math>a = \ | + | We know that <math>\tan(\arctan(x)) = x</math> so we can repeatedly apply the addition formula, <math>\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}</math>. Let <math>a = \cot^{-1}(3)</math>, <math>b=\cot^{-1}(7)</math>, <math>c=\cot^{-1}(13)</math>, and <math>d=\cot^{-1}(21)</math>. We have |
<center><p><math>\tan(a)=\frac{1}{3},\quad\tan(b)=\frac{1}{7},\quad\tan(c)=\frac{1}{13},\quad\tan(d)=\frac{1}{21}</math>,</p></center> | <center><p><math>\tan(a)=\frac{1}{3},\quad\tan(b)=\frac{1}{7},\quad\tan(c)=\frac{1}{13},\quad\tan(d)=\frac{1}{21}</math>,</p></center> |
Revision as of 03:08, 24 February 2012
Problem
Find the value of
Solution
Solution 1
We know that so we can repeatedly apply the addition formula, . Let , , , and . We have
,
So
and
,
so
.
Thus our answer is .
Solution 2
Apply the formula repeatedly.
See also
1984 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |