Difference between revisions of "2024 USAMO Problems/Problem 2"

(Created page with "Let <math>S_1, S_2, \ldots, S_{100}</math> be finite sets of integers whose intersection is not empty. For each non-empty <math>T \subseteq\left\{S_1, S_2, \ldots, S_{100}\rig...")
 
 
Line 1: Line 1:
 
Let <math>S_1, S_2, \ldots, S_{100}</math> be finite sets of integers whose intersection is not empty. For each non-empty <math>T \subseteq\left\{S_1, S_2, \ldots, S_{100}\right\}</math>, the size of the intersection of the sets in <math>T</math> is a multiple of the number of sets in <math>T</math>. What is the least possible number of elements that are in at least 50 sets?
 
Let <math>S_1, S_2, \ldots, S_{100}</math> be finite sets of integers whose intersection is not empty. For each non-empty <math>T \subseteq\left\{S_1, S_2, \ldots, S_{100}\right\}</math>, the size of the intersection of the sets in <math>T</math> is a multiple of the number of sets in <math>T</math>. What is the least possible number of elements that are in at least 50 sets?
 +
 +
==Video Solution==
 +
https://youtu.be/eguz1OuckH0

Latest revision as of 08:09, 5 April 2024

Let $S_1, S_2, \ldots, S_{100}$ be finite sets of integers whose intersection is not empty. For each non-empty $T \subseteq\left\{S_1, S_2, \ldots, S_{100}\right\}$, the size of the intersection of the sets in $T$ is a multiple of the number of sets in $T$. What is the least possible number of elements that are in at least 50 sets?

Video Solution

https://youtu.be/eguz1OuckH0