Difference between revisions of "2024 AIME II Problems/Problem 8"
m (→Problem) |
(→Solution 1) |
||
Line 107: | Line 107: | ||
~Prof_Joker | ~Prof_Joker | ||
+ | ==Solution 2== | ||
+ | [[File:2024 AIME II 8.png|230px|right]] | ||
+ | <cmath>OC = OD = 11, AC = BD = 3, EC' = FD' = 6.</cmath> | ||
+ | <cmath>\frac {CC'}{C'E} = \frac{AC}{OA} \implies CC' = \frac {3 \cdot 6}{11-3}</cmath> | ||
+ | <cmath>\frac {DD'}{DB} = \frac{FD'}{OB} \implies DD' = \frac {3 \cdot 6}{11+3}</cmath> | ||
+ | <cmath>CC' + DD' = \frac {9}{4}+\frac {9}{7} = \frac {99}{28}.</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
==Video Solution== | ==Video Solution== |
Revision as of 15:18, 23 April 2024
Problem
Torus is the surface produced by revolving a circle with radius around an axis in the plane of the circle that is a distance from the center of the circle (so like a donut). Let be a sphere with a radius . When rests on the inside of , it is internally tangent to along a circle with radius , and when rests on the outside of , it is externally tangent to along a circle with radius . The difference can be written as , where and are relatively prime positive integers. Find .
Solution 1
First, let's consider a section of the solids, along the axis. By some 3D-Geomerty thinking, we can simply know that the axis crosses the sphere center. So, that is saying, the we took crosses one of the equator of the sphere.
Here I drew two graphs, the first one is the case when is internally tangent to ,
and the second one is when is externally tangent to .
For both graphs, point is the center of sphere , and points and are the intersections of the sphere and the axis. Point (ignoring the subscripts) is one of the circle centers of the intersection of torus with section . Point (again, ignoring the subscripts) is one of the tangents between the torus and sphere on section . , .
And then, we can start our calculation.
In both cases, we know .
Hence, in the case of internal tangent, .
In the case of external tangent, .
Thereby, . And there goes the answer,
~Prof_Joker
Solution 2
vladimir.shelomovskii@gmail.com, vvsss
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.