Difference between revisions of "User:Fura3334"
(→Problem 6) |
|||
Line 25: | Line 25: | ||
[[File:susmockaimep6diagram.png|252px|center]] | [[File:susmockaimep6diagram.png|252px|center]] | ||
Fly has a large number of red, yellow, green and blue pearls. Fly is making a necklace consisting of <math>8</math> pearls as shown in the diagram. One slot already has a red pearl, and another slot has a green pearl. Find the number of ways to fill the <math>6</math> remaining slots such that any two pearls that are connected directly have different colors. | Fly has a large number of red, yellow, green and blue pearls. Fly is making a necklace consisting of <math>8</math> pearls as shown in the diagram. One slot already has a red pearl, and another slot has a green pearl. Find the number of ways to fill the <math>6</math> remaining slots such that any two pearls that are connected directly have different colors. | ||
+ | |||
+ | ==Problem ?== | ||
+ | Let <math>N=109007732774081</math>. Given that <math>N=pq</math> where <math>p</math>, <math>q</math> are distinct primes greater than <math>1000</math>, and that <math>N</math> cannot be expressed as the sum of 2 perfect squares, find the remainder when | ||
+ | <cmath>\frac{\varphi(N)^2}{2} - (\varphi(N)+1)^6</cmath> | ||
+ | is divided by 144. |
Revision as of 05:01, 17 February 2024
IF YOU'RE AN ADMIN, PLS DONT DELETE THIS PAGE, IM WORKING ON SUS MOCK AIME (well, if i haven't edited this page for 2 weeks, you can delete it)
Problem 1
Kube the robot completes a task repeatedly, each time taking minutes. One day, Furaken asks Kube to complete identical tasks in hours. If Kube works slower and spends minutes on each task, it will finish tasks in exactly hours. If Kube works faster and spends minutes on each task, it can finish tasks in hours with minutes to spare. Find .
Problem 2
Let , , be positive real numbers such that
Find .
Problem 3
Let be an odd prime such that . Find .
Problem 4
For triangle , let be the midpoint of . Extend to such that . Let be the point on such that , and let be the point on such that . Line intersects line at such that . Given that is parallel to , the maximum possible area of triangle can be written as where and are relatively prime positive integers. Find .
Problem 5
Let be a root of the polynomial where , , , are integers. Find .
Problem 6
Fly has a large number of red, yellow, green and blue pearls. Fly is making a necklace consisting of pearls as shown in the diagram. One slot already has a red pearl, and another slot has a green pearl. Find the number of ways to fill the remaining slots such that any two pearls that are connected directly have different colors.
Problem ?
Let . Given that where , are distinct primes greater than , and that cannot be expressed as the sum of 2 perfect squares, find the remainder when is divided by 144.