Difference between revisions of "2024 AIME II Problems/Problem 8"
Prof joker (talk | contribs) |
Prof joker (talk | contribs) m (→Solution 1) |
||
Line 87: | Line 87: | ||
In both cases, we know <math>\Delta OEF\sim \Delta OGH\Longrightarrow \frac{EF}{OE} =\frac{GH}{OG}</math>. | In both cases, we know <math>\Delta OEF\sim \Delta OGH\Longrightarrow \frac{EF}{OE} =\frac{GH}{OG}</math>. | ||
− | Hence, in the case of internal tangent, <math>\frac{E_iF_i}{OE_i} =\frac{G_iH_i}{OG_i}\Longrightarrow \frac{6}{11-3} =\frac{r_i}{11}\Longrightarrow r_i=\frac{33}{4} </math>. In the case of external tangent, <math>\frac{E_oF_o}{OE_o} =\frac{G_oH_o}{OG_o}\Longrightarrow \frac{6}{11+3} =\frac{r_o}{11}\Longrightarrow r_o=\frac{33}{7} </math>. | + | Hence, in the case of internal tangent, <math>\frac{E_iF_i}{OE_i} =\frac{G_iH_i}{OG_i}\Longrightarrow \frac{6}{11-3} =\frac{r_i}{11}\Longrightarrow r_i=\frac{33}{4} </math>. |
+ | In the case of external tangent, <math>\frac{E_oF_o}{OE_o} =\frac{G_oH_o}{OG_o}\Longrightarrow \frac{6}{11+3} =\frac{r_o}{11}\Longrightarrow r_o=\frac{33}{7} </math>. | ||
Thereby, <math>r_i-r_o=\frac{33}{4}-\frac{33}{7}=\frac{99}{28}</math>. And there goes the answer, <math>99+28=\boxed{\mathbf{127} }</math> | Thereby, <math>r_i-r_o=\frac{33}{4}-\frac{33}{7}=\frac{99}{28}</math>. And there goes the answer, <math>99+28=\boxed{\mathbf{127} }</math> | ||
~Prof_Joker | ~Prof_Joker | ||
− | |||
− | |||
− | |||
==See also== | ==See also== |
Revision as of 11:30, 9 February 2024
Torus is the surface produced by revolving a circle with radius 3 around an axis in the plane of the circle that is a distance 6 from the center of the circle (so like a donut). Let be a sphere with a radius 11. When rests on the outside of , it is externally tangent to along a circle with radius , and when rests on the outside of , it is externally tangent to along a circle with radius . The difference can be written as , where and are relatively prime positive integers. Find .
Solution 1
First, let's consider a section of the solids, along the axis. By some 3D-Geomerty thinking, we can simply know that the axis crosses the sphere center. So, that is saying, the we took crosses one of the equator of the sphere.
Here I drew two graphs, the first one is the case when is internally tangent to ,
and the second one is when is externally tangent to .
For both graphs, point is the center of sphere , and points and are the intersections of the sphere and the axis. Point (ignoring the subscripts) is one of the circle centers of the intersection of torus with section . Point (again, ignoring the subscripts) is one of the tangents between the torus and sphere on section . , .
And then, we can start our calculation.
In both cases, we know .
Hence, in the case of internal tangent, . In the case of external tangent, .
Thereby, . And there goes the answer,
~Prof_Joker
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
[[Category:]] The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.