Difference between revisions of "2024 AIME I Problems/Problem 2"

Line 32: Line 32:
  
 
<cmath>x^{(\frac{10}{x})(10)}=x^{4x^{\frac{10}{x}}}</cmath>
 
<cmath>x^{(\frac{10}{x})(10)}=x^{4x^{\frac{10}{x}}}</cmath>
<cmath>{\frac{100}{x}}={4x^{\frac{10}{x}}}</cmath>
+
<cmath>{\frac{100}{x}}={4(x^{\frac{10}{x}})}</cmath>
 
<cmath>{\frac{25}{x}}={x^{\frac{10}{x}}}</cmath>
 
<cmath>{\frac{25}{x}}={x^{\frac{10}{x}}}</cmath>
 +
 +
But <math>x^{\frac{10}{x}}=y</math>, so <math>\frac{25}{x}=y</math> and <math>xy=\boxed{25}</math>.
  
  

Revision as of 19:03, 2 February 2024

Problem

There exist real numbers $x$ and $y$, both greater than 1, such that $\log_x\left(y^x\right)=\log_y\left(x^{4y}\right)=10$. Find $xy$.

Solution 1

By properties of logarithms, we can simplify the given equation to $x\log_xy=4y\log_yx=10$. Let us break this into two separate equations: \begin{align*} x\log_xy&=10 \\ 4y\log_yx&=10. \\ \end{align*} We multiply the two equations to get: \[4xy\left(\log_xy\log_yx\right)=100.\]

Also by properties of logarithms, we know that $\log_ab\cdot\log_ba=1$; thus, $\log_xy\cdot\log_yx=1$. Therefore, our equation simplifies to:

\[4xy=100\implies xy=\boxed{025}.\]

~Technodoggo

Solution 2 (if you're bad at logs)

Convert the two equations into exponents:

\[x^{10}=y^x~(1)\] \[y^{10}=x^{4y}~(2).\]

Take $(1)$ to the power of $\frac{1}{x}$:

\[x^{\frac{10}{x}}=y.\]

Plug this into $(2)$:

\[x^{(\frac{10}{x})(10)}=x^{4x^{\frac{10}{x}}}\] \[{\frac{100}{x}}={4(x^{\frac{10}{x}})}\] \[{\frac{25}{x}}={x^{\frac{10}{x}}}\]

But $x^{\frac{10}{x}}=y$, so $\frac{25}{x}=y$ and $xy=\boxed{25}$.


See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png