Difference between revisions of "DVI exam"

(Created page with "==2022 222 problem 7== <cmath>r = 0.5, h = 3/2, KM = \frac {\sqrt{3}}{2},</cmath> <cmath>AM = KM \cdot \tan \alpha, BM = \frac {KM}{\tan \alpha} \implies AM + BM = AB</cmath>...")
 
(2022 222 problem 7)
Line 1: Line 1:
 
==2022 222 problem 7==
 
==2022 222 problem 7==
 +
[[File:MSU 2022 2 7.png|400px|right]]
 
<cmath>r = 0.5, h = 3/2, KM = \frac {\sqrt{3}}{2},</cmath>
 
<cmath>r = 0.5, h = 3/2, KM = \frac {\sqrt{3}}{2},</cmath>
<cmath>AM = KM \cdot \tan \alpha, BM = \frac {KM}{\tan \alpha} \implies AM + BM = AB</cmath>  
+
<cmath>AM = KM \cdot \tan \alpha, BM = \frac {KM}{\tan \alpha},</cmath>
 +
<cmath>AM + BM = AB \implies</cmath>
 
<cmath>\tan \alpha + \frac {1}{\tan \alpha} = 2 \sqrt {2} \implies \tan \alpha = \sqrt {2} - 1 \implies \tan 2 \alpha = 1 \implies 2 \alpha = \frac {\pi}{4}.</cmath>
 
<cmath>\tan \alpha + \frac {1}{\tan \alpha} = 2 \sqrt {2} \implies \tan \alpha = \sqrt {2} - 1 \implies \tan 2 \alpha = 1 \implies 2 \alpha = \frac {\pi}{4}.</cmath>

Revision as of 14:42, 27 January 2024

2022 222 problem 7

MSU 2022 2 7.png

\[r = 0.5, h = 3/2, KM = \frac {\sqrt{3}}{2},\] \[AM = KM \cdot \tan \alpha, BM = \frac {KM}{\tan \alpha},\] \[AM + BM = AB \implies\] \[\tan \alpha + \frac {1}{\tan \alpha} = 2 \sqrt {2} \implies \tan \alpha = \sqrt {2} - 1 \implies \tan 2 \alpha = 1 \implies 2 \alpha = \frac {\pi}{4}.\]