Difference between revisions of "2024 AMC 8 Problems/Problem 7"

m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
 
A <math>3</math>x<math>7</math> rectangle is covered without overlap by 3 shapes of tiles: <math>2</math>x<math>2</math>, <math>1</math>x<math>4</math>, and <math>1</math>x<math>1</math>, shown below. What is the minimum possible number of <math>1</math>x<math>1</math> tiles used?
 
A <math>3</math>x<math>7</math> rectangle is covered without overlap by 3 shapes of tiles: <math>2</math>x<math>2</math>, <math>1</math>x<math>4</math>, and <math>1</math>x<math>1</math>, shown below. What is the minimum possible number of <math>1</math>x<math>1</math> tiles used?
  
 
+
<math>\textbf{(A) } 1\qquad\textbf{(B)} 2\qquad\textbf{(C) } 3\qquad\textbf{(D) } 4\qquad\textbf{(E) } 5</math>
(A) <math>1</math>  (B) <math>2</math>  (C) <math>3</math>  (D) <math>4</math>  (E) <math>5</math>
 
  
 
==Solution 1==
 
==Solution 1==

Revision as of 12:17, 26 January 2024

Problem

A $3$x$7$ rectangle is covered without overlap by 3 shapes of tiles: $2$x$2$, $1$x$4$, and $1$x$1$, shown below. What is the minimum possible number of $1$x$1$ tiles used?

$\textbf{(A) } 1\qquad\textbf{(B)} 2\qquad\textbf{(C) } 3\qquad\textbf{(D) } 4\qquad\textbf{(E) } 5$

Solution 1

We can eliminate B, C, and D, because they are not $21-$ any multiple of $4$. Finally, we see that there is no way to have A, so the solution is $(E) \boxed{5}$.

Solution 2

Let $x$ be the number of $1x1$ tiles. There are $21$ squares and each $2x2$ or $1x4$ tile takes up 4 squares, so $x \equiv 1 \pmod{4}$, so it is either $1$ or $5$. Color the columns, starting with red, then blue, and alternating colors, ending with a red column. There are $12$ red squares and $9$ blue squares, but each $2x2$ and $1x4$ shape takes up an equal number of blue and red squares, so there must be $3$ more $1x1$ tiles on red squares than on blue squares, which is impossible if there is just one, so the answer is $\boxed{\textbf{(E)\ 5}}$, which can easily be confirmed to work

~arfekete

Video Solution 1 (easy to digest) by Power Solve

https://youtu.be/16YYti_pDUg?si=KjRhUdCOAx10kgiW&t=59