Difference between revisions of "2024 AMC 8 Problems/Problem 15"

(Problem)
(Solution)
Line 9: Line 9:
  
 
==Solution==
 
==Solution==
 +
Notice <math>\underline{F}~\underline{L}~\underline{Y}~\underline{F}~\underline{L}~\underline{Y} = 1000(\underline{F}~\underline{L}~\underline{Y}) + \underline{F}~\underline{L}~\underline{Y}</math>.
 +
 +
Likewise, <math>\underline{B}~\underline{U}~\underline{G}~\underline{B}~\underline{U}~\underline{G} = 1000(\underline{B}~\underline{U}~\underline{G}) + \underline{B}~\underline{U}~\underline{G}</math>.
 +
 +
Therefore, we have the following equation:
 +
 +
<math>8 \times 1001(\underline{F}~\underline{L}~\underline{Y}) = 1001(\underline{B}~\underline{U}~\underline{G})</math>.
 +
 +
Simplifying the equation gives
 +
 +
<math>8(\underline{F}~\underline{L}~\underline{Y}) = (\underline{B}~\underline{U}~\underline{G})</math>.
 +
 +
We can now use our equation to test each answer choice.
 +
 +
We have that <math>123123 \times 8 = 984984</math>, so we can find the sum:
 +
 +
<math>\underline{F}~\underline{L}~\underline{Y}+\underline{B}~\underline{U}~\underline{G} = 123 + 984 = 1107</math>.
 +
 +
So, the correct answer is <math>\textbf{(C)}\ 1107</math>.

Revision as of 13:24, 25 January 2024

Problem

Let the letters $F$,$L$,$Y$,$B$,$U$,$G$ represent distinct digits. Suppose $\underline{F}~\underline{L}~\underline{Y}~\underline{F}~\underline{L}~\underline{Y}$ is the greatest number that satisfies the equation

\[8\cdot\underline{F}~\underline{L}~\underline{Y}~\underline{F}~\underline{L}~\underline{Y}=\underline{B}~\underline{U}~\underline{G}~\underline{B}~\underline{U}~\underline{G}.\]

What is the value of $\underline{F}~\underline{L}~\underline{Y}+\underline{B}~\underline{U}~\underline{G}$?

$\textbf{(A)}\ 1089 \qquad \textbf{(B)}\ 1098 \qquad \textbf{(C)}\ 1107 \qquad \textbf{(D)}\ 1116 \qquad \textbf{(E)}\ 1125$

Solution

Notice $\underline{F}~\underline{L}~\underline{Y}~\underline{F}~\underline{L}~\underline{Y} = 1000(\underline{F}~\underline{L}~\underline{Y}) + \underline{F}~\underline{L}~\underline{Y}$.

Likewise, $\underline{B}~\underline{U}~\underline{G}~\underline{B}~\underline{U}~\underline{G} = 1000(\underline{B}~\underline{U}~\underline{G}) + \underline{B}~\underline{U}~\underline{G}$.

Therefore, we have the following equation:

$8 \times 1001(\underline{F}~\underline{L}~\underline{Y}) = 1001(\underline{B}~\underline{U}~\underline{G})$.

Simplifying the equation gives

$8(\underline{F}~\underline{L}~\underline{Y}) = (\underline{B}~\underline{U}~\underline{G})$.

We can now use our equation to test each answer choice.

We have that $123123 \times 8 = 984984$, so we can find the sum:

$\underline{F}~\underline{L}~\underline{Y}+\underline{B}~\underline{U}~\underline{G} = 123 + 984 = 1107$.

So, the correct answer is $\textbf{(C)}\ 1107$.