Difference between revisions of "Proofs of trig identities"
(Created page with "=Introduction= <math>\sin</math> and <math>\cos</math> are easy to define. I prefer the unit circle definition as it makes these proofs easier to understand. Next, we define s...") |
|||
Line 10: | Line 10: | ||
<math>\csc = \frac{1}{\sin}</math> | <math>\csc = \frac{1}{\sin}</math> | ||
+ | |||
+ | Note: I've omitted <math>\theta</math> because it's unnecessary and might clog things up a little. | ||
With a bit of ingenuity, we can create the following diagram: | With a bit of ingenuity, we can create the following diagram: | ||
Line 45: | Line 47: | ||
label("1",B--O); | label("1",B--O); | ||
draw(shift(dir(270)/24)*brace(C,O)); | draw(shift(dir(270)/24)*brace(C,O)); | ||
− | label("$\cot \theta$",shift(dir(270)/ | + | label("$\cot \theta$",shift(dir(270)/4)*brace(E,O),S); |
draw(shift(dir(d+90)/24)*brace(O,D)); | draw(shift(dir(d+90)/24)*brace(O,D)); | ||
label("$\csc \theta$",shift(dir(degrees(d)+90)/24)*brace(O,D),dir(degrees(d)+90)); | label("$\csc \theta$",shift(dir(degrees(d)+90)/24)*brace(O,D),dir(degrees(d)+90)); | ||
draw(shift(dir(270)/4)*brace(E,O)); | draw(shift(dir(270)/4)*brace(E,O)); | ||
− | label("1",shift(dir(270)/ | + | label("1",shift(dir(270)/24)*brace(C,O),S); |
draw(shift(dir(270)/4)*O--shift(dir(270)/24)*O); | draw(shift(dir(270)/4)*O--shift(dir(270)/24)*O); | ||
draw(shift(dir(270)/4)*E--shift(dir(270)/24)*E); | draw(shift(dir(270)/4)*E--shift(dir(270)/24)*E); | ||
− | label("1",E--F, | + | label("1",E--F,SE); |
− | label("$\tan \theta$", | + | label("$\tan \theta$",C--D); |
draw(shift(dir(degrees(d)+90)/4)*brace(O,F)); | draw(shift(dir(degrees(d)+90)/4)*brace(O,F)); | ||
label("$\sec \theta$",shift(dir(degrees(d)+90)/4)*brace(O,F),dir(degrees(d)+90)); | label("$\sec \theta$",shift(dir(degrees(d)+90)/4)*brace(O,F),dir(degrees(d)+90)); | ||
Line 59: | Line 61: | ||
draw(shift(dir(degrees(d)+90)/4)*F--shift(dir(degrees(d)+90)/24)*F); | draw(shift(dir(degrees(d)+90)/4)*F--shift(dir(degrees(d)+90)/24)*F); | ||
</asy> | </asy> | ||
+ | |||
+ | We can note that the functions are correct by similar triangles. | ||
+ | |||
+ | =Pythagorean identities= | ||
+ | |||
+ | Pythagorean identities are easy and there's no algebra involved. | ||
+ | |||
+ | ==<math>\cos^2+\sin^2=1</math>== | ||
+ | |||
+ | The proof here is very straightforward. We use the pythagorean theorem on <math>\triangle OAB</math> giving us <math>OA^2+AB^2=OB^2</math> or <math>\sin^2+\cos^2=1^2</math>. |
Revision as of 15:23, 20 January 2024
Introduction
and are easy to define. I prefer the unit circle definition as it makes these proofs easier to understand. Next, we define some other functions:
Note: I've omitted because it's unnecessary and might clog things up a little.
With a bit of ingenuity, we can create the following diagram:
We can note that the functions are correct by similar triangles.
Pythagorean identities
Pythagorean identities are easy and there's no algebra involved.
The proof here is very straightforward. We use the pythagorean theorem on giving us or .