Difference between revisions of "2002 AMC 12P Problems/Problem 20"

(Solution)
m (Solution)
Line 19: Line 19:
  
 
== Solution ==
 
== Solution ==
When <math>x = 2</math>, then we get <math> f(2) + 2f(1001) = 6</math>; we can also substitute <math>x</math> as <math>1001</math>, then we will get <math>f(1001) + 2f(2) =3003</math>. Solve this system of equations, then we get <math>f(2)= 2000</math> <math>\Longrightarrow \boxed{\mathrm{B}}</math>.
+
Setting <math>x = 2</math> gives <math> f(2) + 2f(1001) = 6</math>.
 +
Setting <math>x = 1001</math> gives <math> 2f(2) + f(1001) = 3003</math>.
 +
 
 +
Adding these 2 equations and dividing by 3 gives
 +
<math>f(2) + f(1001) = \frac{6+3003}{3} = 1003</math>.
 +
 
 +
Subtracting these 2 equations gives
 +
<math>f(2) - f(1001) = 2997</math>.
 +
 
 +
Therefore, <math>f(2) = \frac{1003+2997}{2} = \boxed {2000 \text {B}}</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=19|num-a=21}}
 
{{AMC12 box|year=2002|ab=P|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:29, 28 March 2024

Problem

Let $f$ be a real-valued function such that

\[f(x) + 2f(\frac{2002}{x}) = 3x\]

for all $x>0.$ Find $f(2).$

$\text{(A) }1000 \qquad \text{(B) }2000 \qquad \text{(C) }3000 \qquad \text{(D) }4000 \qquad \text{(E) }6000$

Solution

Setting $x = 2$ gives $f(2) + 2f(1001) = 6$. Setting $x = 1001$ gives $2f(2) + f(1001) = 3003$.

Adding these 2 equations and dividing by 3 gives $f(2) + f(1001) = \frac{6+3003}{3} = 1003$.

Subtracting these 2 equations gives $f(2) - f(1001) = 2997$.

Therefore, $f(2) = \frac{1003+2997}{2} = \boxed {2000 \text {B}}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png