Difference between revisions of "User:Ddk001"

m (User Count)
m (User Counts)
Line 36: Line 36:
 
If this is you first time visiting this page, change the number below by one. (Add 1, do NOT subtract 1)
 
If this is you first time visiting this page, change the number below by one. (Add 1, do NOT subtract 1)
  
0
+
<math>\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{0}}}}}}</math>

Revision as of 18:35, 1 January 2024

Problems (I made it, not copied)

See if you can solve these:

1. There is one and only one perfect square in the form

$(p^2+1)(q^2+1)-((pq)^2-pq+1)$

Find that perfect square.

2. Suppose there is complex values $x_1, x_2,$ and $x_3$ that satisfy

$(x_i-\sqrt[3]{13})((x_i-\sqrt[3]{53})(x_i-\sqrt[3]{103})=\frac{1}{3}$

Find $x_{1}^3+x_{2}^3+x_{2}^3$.

3. Suppose

$x \equiv 2^4 \cdot 3^4 \cdot 7^4+2^7 \cdot 3^7 \cdot 5^6 \pmod{7!}$

Find the remainder when $\min{x}$ is divided by 1000.

4. Suppose $f(x)$ is a $10000000010$-degrees polynomial. The Fundamental Theorem of Algebra tells us that there are $10000000010$ roots, say $r_1, r_2, \dots, r_{10000000010}$. Suppose all integers $n$ ranging from $-1$ to $10000000008$ satisfies $f(n)=n$. Also, suppose that

$(2+r_1)(2+r_2) \dots (2+r_{10000000010})=m!$

for an integer $m$. If $p$ is the minimum possible value of

$(1+r_1)(1+r_2) \dots (1+r_{10000000010})$.

Find the number of factors of the prime $999999937$ in $p$.

5. (Much harder) $\Delta ABC$ is an isosceles triangle where $CB=CA$. Let the circumcircle of $\Delta ABC$ be $\Omega$. Then, there is a point $E$ and a point $D$ on circle $\Omega$ such that $AD$ and $AB$ trisects $\angle CAE$ and $BE<AE$, and point $D$ lies on minor arc $BC$. Point $F$ is chosen on segment $AD$ such that $CF$ is one of the altitudes of $\Delta ACD$. Ray $CF$ intersects $\Omega$ at point $G$ (not $C$) and is extended past $G$ to point $I$, and $IG=AC$. Point $H$ is also on $\Omega$ and $AH=GI<HB$. Let the perpendicular bisector of $BC$ and $AC$ intersect at $O$. Let $J$ be a point such that $OJ$ is both equal to $OA$ (in length) and is perpendicular to $IJ$ and $J$ is on the same side of $CI$ as $A$. Let $O’$ be the reflection of point $O$ over line $IJ$. There exist a circle $\Omega_1$ centered at $I$ and tangent to $\Omega$ at point $K$. $IO’$ intersect $\Omega_1$ at $L$. Now suppose $O’G$ intersects $\Omega$ at one distinct point, and $O’, G$, and $K$ are collinear. If $IG^2+IG \cdot GC=\frac{3}{4} IK^2 + \frac{3}{2} IK \cdot O’L + \frac{3}{4} O’L^2$, then $\frac{EH}{BH}$ can be expressed in the form $\frac{\sqrt{b}}{a} (\sqrt{c} + d)$, where $b$ and $c$ are not divisible by the squares of any prime. Find $a^2+b^2+c^2+d^2+abcd$.

User Counts

If this is you first time visiting this page, change the number below by one. (Add 1, do NOT subtract 1)

$\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{0}}}}}}$